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INTRODUCTION 
 
 Fast reactors differ from thermal reactors in several aspects and require a special 
treatment.   
 The parasitic capture cross sections in the fuel, coolant and structure fall with 
increasing neutron energy faster than the fission cross section.  Thus the neutron 
economy is improved in the fast region of the neutron spectrum.  This is achieved by 
avoiding the use of moderator materials as coolants. 
 Since the fission cross section is less in a fast reactor than in a thermal reactor, a 
fast reactor would contain much more fissile fuel than a thermal reactor for the attainment 
of a critical mass. 
 Fast reactor cores, having no moderator, will be very compact in size.  This leads 
to a higher power density necessitating the use of efficient coolants such as liquid metals.  
Sodium, lead, and a sodium-potassium eutectic that is liquid at room temperature are 
prime candidates.   
 A small core would imply a relatively large amount of neutron leakage from its 
surface.  A reflector is avoided and is replaced by a blanket to intercept the leaking 
neutrons into a breeding material.  The multiplication and energy production in the 
blanket must be accounted for from the perspective of power production. 
 We proceed to treat such a system using a subdivision into a fast group for 
neutrons of energy above 1.35 MeV, the fission threshold of U238, and a thermal group 
for energies below it. 
 
THE CORE AND BLANKET TWO GROUP EQUATIONS 
 
 The fast and thermal group core equations can be written as: 
 
Core fast group: 
 

    (1) 

2
1c 1c 1ac 1c 1s2c 1c 1 1 1fc 1c 1 2 2

-[Leakage from fast group]-[Absorptions in fast group]
-[Downscattering from fast to thermal group]
+[Fissions in fast group]+[Fissions in thermal group]=0

D - - c cφ φ φ χν φ χν+ ∇ ∑ ∑ + ∑ + ∑ fc 2c 0φ =
 
Core thermal group: 
 



    (2) 

2
2c 2c 2ac 2c 1s2c 1c 2 1 1fc 1c 2 2

-[Leakage from thermal group]-[Absorptions in thermal group]
+[Downscattering neutrons from fast group]
+[Fissions in fast group]+[Fissions in thermal group]=0
D - cφ φ φ χ ν φ χ ν∇ ∑ + ∑ + ∑ + 2fc 2c 0c φ∑ =

 
We can notice that both fast and thermal neutrons are causing fissions in either group 
such as: 
 
   1 2 1χ χ+ =  
 
The average numbers of neutrons per fission in different materials are listed in Table 1. 
 

Table 1: Two group fast reactor constants. (From ANL-5800). 
Group 1: Energy range 1.35 MeV to ∞ , χ1 = 0.575. 
Group 2: Energy range 0 to 1.35 MeV, χ2 = 0.425. 

 
ν σf σc σtrElement 

1 2 1 2 1 2 1 2 
σ1s2

Pu239 3.10 2.93 1.95 1.78 0.10 0.30 4.6 7.0 0.90 
U235 2.70 2.50 1.29 1.44 0.08 0.28 4.5 7.2 1.50 
U238 2.60 2.47 0.524 0.005 0.036 0.19 4.6 7.1 2.05 
Fe - - - - 0.005 0.006 2.0 2.8 0.70 
Na - - - - 0.0005 0.0008 2.0 3.5 0.30 
Al - - - - 0.004 0.002 1.8 3.5 0.38 

 
 As in the case of thermal reactors: 
 
   . a f∑ = ∑ +∑c

 
 In the absence of a moderator, the role of inelastic scattering is as important as the 
elastic scattering, so that: 
 
   1 2 1 2 1 2s in e∑ = ∑ +∑ . 
 
 The diffusion coefficients are defined as: 
 

   1 2
1 2

1 1,
3 3tr tr

D D= =
∑ ∑

, 

 
where: 
 

   1 1 1 2 1 2 1 1 1 1

2 2 2 2 2 2 0

(1 )
(1 )

tr a in e in e

tr a in e

0µ
µ

∑ = ∑ +∑ +∑ +∑ +∑ −
∑ = ∑ +∑ +∑ −

 



   1 2

 is the elastic scattering cross section within group j
 is the inelastic scattering cross section within group j

, are the macroscopic transport cross sections, which are
the reciprocal

jej

jinj

tr tr

σ

σ

∑ ∑
s of the mean free paths for all interactions

in groups 1 and 2.

 

 
 In the same manner, we can now write the U238 blanket equations, neglecting the 
thermal fission of U238. 
 
Blanket fast group: 
 
      (3) 2

1b 1b 1ab 1b 1s2b 1b 1 1 1fb 1bD - - bφ φ φ χν φ+ ∇ ∑ ∑ + ∑ = 0
 
Blanket thermal group: 
 
      (4) 2

2b 2b 2ab 2b 1s2b 1b 2 1 1fb 1b+D - 0bφ φ φ χ ν φ∇ ∑ + ∑ + ∑ =
 
CORE AND BLANKET COUPLING COEFFICIENTS AND CRITICALITY 
DETERMINANT 
 
 If we let: 
 
   2 2B φ∇ = − , 
 
we can rewrite Eqns. 1 and 2 in the form: 
 
   2

1c 1c 1ac 1s2c 1 1 1fc 1c 1 2 2fc 2cD +( )c cB φ χν φ χν φ∑ +∑ − ∑ = ∑    (5) 
 
   2

2c 2c 2ac 2 2 2fc 2c 1s2c 2 1 1fc 1cD +( ) ( )c cB φ χ ν φ χ ν φ∑ − ∑ = ∑ + ∑   (6) 
 
 Let us denote: 
 

   1ac 1s2c 1 1 1fc 1

2ac 2 2 2fc 1 2

( )
( )

c n

c p c

cχν
χ ν

∑ +∑ − ∑ = ∑
∑ − ∑ = ∑

 

 
as the net core removal cross sections, and: 
 
   1s2c 2 1 1fc 1 2( )c p cχ ν∑ + ∑ = ∑  
 
as the total production cross section of group 2 neutrons from group 1 neutrons, and define: 
 



   2 21 2
1 2

1 2

,c c
nc nc

nc nc

D DL L= =
∑ ∑

 

 
then, Eqns. 5 and 6 become: 
 

   2 2 1 2 2fc
1nc 1c 2c

1

(1+L ) c

nc

B χνφ φ∑
=

∑
     (7) 

 

   ip2c2 2
2nc 2c 1c

2

(1+L )
nc

B φ φ
∑

=
∑

     (8) 

 
Eliminating 1cφ  and 2cφ  from Eqns. 7 and 8, we get: 
 

   2 2 2 2
1nc 2nc

1 11
(1+L ) (1+L )nk

B B
=      (9) 

 
where: 
 

   1 2 2 1 2

1 2

c fc p c
n

nc nc

k
χν ∑ ∑

=
∑ ∑

      (10) 

 
 having estimated the quantities  and k2 2

1 2,nc ncL L n, and similarly to the case of 
thermal reactors, we can estimate the principal and alternate bucklings as: 
 

   
2

2 4
2

b b cµ − + +
=       (11) 

 
          (12) 2 2 bν µ= +
 
where: 
 

   
2 2
1 2

2 2
1 2

1 1

1
.

nc nc

n

nc nc

b
L L
kc

L L

= +

−
=

 

 
 For the principal buckling, 2 2B µ= , 
 

   
2 2

1 1 1
2 2 '

2 2 2

0 ,

0 ,
c c c

c c c

AX

A X

φ µ φ φ

φ µ φ φ

∇ + = =

∇ + = =
 



 
 By substituting in Eqn. 2: 
 
   2 ' '

2c 2nc 1p2c-D X- X X 0A A Aµ ∑ + ∑ = , 
 
from which we can get the principal coupling coefficient as: 
 

   
'

1 2
1 2

2 2( )
p c

nc c

AS
A D µ

∑
= =

∑ +
     (13) 

 
 For the alternate buckling, 2 2B ν= , 
 

    
2 2

1 1 1
2 2

2 2 2

0 ,

0 ,
c c c

c c c

CY

C Y

φ ν φ φ

φ ν φ φ

∇ − = =

∇ − = = '

 
 By substituting in Eqn. 2, 
 

   
'

1 2
2 2

2 2( )
p c

nc c

CS
C D ν

∑
= =

∑ +
     (14) 

 
 To estimate the coupling coefficients in the reflector, we define the removal cross 
section in the blanket as: 
 
   1nb 1ab 1 2 1 1 1fbs b bχν∑ = ∑ +∑ − ∑  
 
and the total production cross section of thermal neutrons from fast group neutrons: 
 
   1p2b 1s2b 2 2 1fbbχ ν∑ = ∑ + ∑  
 
We can thus write Eqns. 3 and 4 as: 
 

   2 1
1 1

1

0nb
b b

bD
φ φ∑

∇ − =       (15) 

 

   1 22 2
2 2 1

2 2

0p bab
b b b

b bD D
φ φ φ

∑∑
∇ − + =     (16) 

 
Defining the diffusion areas: 
 

   2 21 2
1 2

1 2

,b b
b b

nb ab

D DL L= =
∑ ∑

, 

 



the last equations become: 
 

   2
1 12

1

1 0b b
bL

φ φ∇ − =       (17) 

 

   1 22
2 2 12

2 2

1 0p b
b b b

b bL D
φ φ φ

∑
∇ − + =      (18) 

 
 In the same way as in the case of thermal reactors, we get: 
 

   1 2
3

2
2 2
2 1

1
1 1( )

p b

b

b b

S
D

L L

∑
=

+
     (19) 

 
 If the currents and fluxes continuity conditions are applied at the core and blanket 
boundary we obtain a 4 by 4 criticality determinant as in the case of thermal reactors, but 
with a different definition of the coupling coefficients and constants.  If the reactor 
composition is varied, then a single value of the critical radius for the core can be 
obtained. 
 
ESTIMATION OF THE FLUX DISTRIBUTIONS 
 
 We seek to obtain expressions for the flux distributions normalized to 1 Watt of 
reactor power production.  The difference between fast reactors and thermal reactors is 
that fast fissions are generating power in the blanket.  Thus the total fast reactor power 
can be written as: 
 

3 1
2 2 1 1 1 1 3

11
2 2 1 1 1 1

fissions MeV Joule[Watts] ( ) . cm .200 1.6 10
cm .sec fission MeV

3.2 10 ( )

fc c c fc c c fb b b

fc c c fc c c fb b b

P V V V x

x V V V

φ φ φ

φ φ φ

−

−

= ∑ + ∑ + ∑

= ∑ + ∑ + ∑

3

(20) 

 
 We define the fast fission factor as: 
 

   
1 1 1 1

2 2 2 2

Total fission rate in core and blanket
Thermal group energy fissions in core

1 fc c fb b b

fc c fc c c

V
V

ε

φ φ
φ φ

=

∑ ∑
= + +

∑ ∑

   (21) 

 
From Eqns. 20 and 21, we get: 
 
   11

2 2[Watts] 3.2 10 fc c cP x ε φ−= ∑ V     (22) 
 



 To compute the power P, one needs to estimate the fast fission factor ε.  This in turn 
needs the knowledge of: 
 
   1 2 1, ,c c bφ φ φ . 
 
The first two are the same as the fast and thermal core fluxes 1 2,c cφ φ  in the case of thermal 
reactors associated with the appropriate constants. 
 The quantity 1bφ  can be written as: 
 

   

2
1

1
1

2

3 3
1

( )sinh 4

4

3 (sinh
( )

R T

b b
bV R

b R T
b

V
R

R T

bR

F R T d rdV r dr
r L

dV r dr

F R T d rr d
R T R L

φ π
φ

π

+

+

+

+ + −

= =

+ + −
=

+ −

∫ ∫

∫ ∫

∫
) r

 

 
where the integration is carried out over the blanket thickness. 
 
 Now: 
 
  

 

( ) 2 2

sinh [cosh ]

[ cosh cosh ]

[ cosh sinh ]

cosh cosh sinh sinh

b d b d

a a
b d

b d
a

a

b d
a

b r b rI r c rd
c c

b r b rc r c dr
c c

b r b rc r c
c c

d b a d bc b d a c c
c c c

− −

−
−

−

− −⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫

∫

a
c

 

 
Thus: 
 

  

2
1 1 13 3

1

2
1 1

1 1

3 [ cosh sinh
( )

( )cosh sinh ]

b b b
b

b b
b b

F T dRL L
R T R L L

d dL R d L
L L

φ
⎛ ⎞ ⎛ ⎞+ +

= +⎜ ⎟ ⎜ ⎟+ − ⎝ ⎠ ⎝
⎛ ⎞ ⎛ ⎞

− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1b

T d

⎠    (23) 

 
 Thus the fast fission factor ε can be evaluated from Eqn. 21.  The quantity A can be 
calculated for P = 1 Watt, and the fluxes can be plotted. 



 
ESTIMATION OF THE BREEDER RATIO 
 
 In fast reactor systems based upon the U235 and Pu239 fuel cycle, it is possible to 
produce more fissile fuel atoms than those that are consumed.  As a measure of this 
capability we define the “breeding ratio” BR as: 
 

   Rate of fissile atoms productionBR=
Rate of fissile atoms consumption

   (24) 

 
When BR<1, it is denoted as the “conversion ratio” instead. 
 If α is the capture to fission ratio, then the number of fissile atoms consumed per 
second in the core: 
 
   1 1 1 2 2 2(1 ) (1 )fc c c fc c cV Vα φ α φ+ ∑ + + ∑  
 
 Writing down the number of fissile atoms production in the core and blanket, Eqn. 
24 can be written as: 
 

   

1 1 2 2 1 1 2 2

1 1 1 2 2 2

1
1 2 1 1 2 2

2 2

1
1 1 2 2

2

(1 ) (1 )

( )

(1 ) (1 )

cc c c cc c c cb b b cb b b

fc c c fc c

c b
cc cc cb b cb b

c c

c
fc fc

c

V V VBR
V V

V
V

φ φ φ φ
α φ α φ

φ φ φ
φ φ

φα α
φ

∑ + ∑ + ∑ + ∑
=

+ ∑ + + ∑

∑ + ∑ + ∑ + ∑
=

+ ∑ + + ∑

c

V

c

  (25) 

 
where  are the capture cross sections in the core for groups 1 and 2. 1 2,c∑ ∑

 In Eqn. 25 we need to find an expression for 2bφ .  This can be done in the following 
way: 
 

   

2 3 1 2

2

3 1
2

( )

4 (sinh

b b b
V V

b
bb

V
R T

b
b bR

dV S GZ dV

VdV

G R T dS r
V L

φ φ
φ

πφ
+

+
= =

+ + −
= +

∫ ∫

∫

∫
)r dr

 

 
 Making use of the result in Eqn. 23, we can write: 
 



  

2
2 3 1 2 23 3

2 2

2
2 2

2 2

3 [ cosh sinh
( )

( )cosh sinh ]

b b b b
b b

b b
b b

G T dS RL L
R T R L L

d dL R d L
L L

φ φ
⎛ ⎞ ⎛ ⎞+ +

= + +⎜ ⎟ ⎜ ⎟+ − ⎝ ⎠ ⎝
⎛ ⎞ ⎛ ⎞

− + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

T d

⎠  (26) 

 
Knowing 2bφ  from eqn. 26 and 1bφ  from Eqn. 23, the value of the breeding ration can be 
determined from Eqn. 25. 
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