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INTRODUCTION

Most reactor systems nowadays are of the heterogeneous type, where the fuel and
moderator/coolant are lumped and do not form a homogeneous mixture. The criticality
parameters of interest such as the regeneration factor (1) fuel utilization factor (f) and the
resonance escape probability (p) used in the four factor formula for the infinite medium

multiplication factor will have to account in their calculation of this fact.

CROSS-SECTIONS HOMOGENIZATION IN HETEROGENEOUS
SYSTEMS

We can mix the different material regions in a heterogeneous system and treat it
as a homogeneous system only if the diffusion length (L) for the homogenized region is
larger than any characteristic dimension (d) of the system, for thermal neutrons:

L>>d

Similarly for fast neutrons, the following condition must be satisfied:

\/¥>>d,

where: 1 is the slowing down area, or age.



In any homogenization, we require the preservation of reaction rates in the

heterogeneous and homogenized systems. This can be expressed as:

TPV = [(Ng(r)dv (1)

where: V is the total volume of the reactor,

5 is the average flux in the system: gZJ‘dV¢(r)
\%

2. is a homogenized cross section.

For several m separate regions, Eqn. 1 can be written as:
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which is a requirement that the cross sections are to be flux weighted and volume

weighted in obtaining homogeneous cross sections. If the fluxes are reasonably constant,

Z. ~ % and we can use only volume weighting:
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The factor (Z,/ #) is often referred to as the self-shielding factor.

EFFECT OF HETEROGENEITY ON THE REGENERATION
FACTOR

The quantity n is the number of fission neutron produced per neutron absorbed in the

fuel. In a homogeneous reactor, “fuel” means the fissionable isotope. In a lumped



reactor, “fuel” now refers to the fissionable isotope and any isotopes which are mixed
with the fissionable isotope. If the fuel is lumped, it may consist of number of isotopes,
some of which are fissionable, and some are not. The average flux may not be the same

in all isotopes considered as part of the fuel. In this case, the regeneration factor is given

by:

ZViNinial

where ¢_5| is the average flux over the i-th isotope.

If the various isotopes are intimately mixed, al ~ constant, and Eqn. 4 becomes:

zvi Noy
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As an example, for natural uranium:

~ VN(U235)O_f(U235)
- N(U 235)Gf (U 235)+ N(U 235)GC(U 235)+ N(U 238)GC(U 238)
VGf (U 235)

n

o, (U™)+o (UP)+

Gc (U 238)
r

~ N(U 235)

where: r= =0.00717 =~ L .
140

N (U 238) -
Since cross section data bases for use in thermal reactors list the 2200 [m/sec] values,

these have to be modified by the non-1/v factors (g), and the temperature and Maxwell

distribution factors:
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is the ratio of the most probable to the average energy

where:

for a velocity Maxwellian distribution:

mv?

N(V) = 470, (— )2\ g 2K

27KT

g is the non-1/v factor, assuming well-moderated systems. It is a function
of temperature. (Note that scattering cross sections are not subject to this
correction.)

t is the medium temperature in degrees Celcius (~20°C at room

temperature).

Since g(***U)=1.002, and g(**°U)=0.975, at room temperature, we get:

n=2.47x 0.975x580 133

0.975x 687 + (1:002x2.75)
0.00717

The cross section data were taken from Table I, the non-1/v factors from Table II and the

value of the average number of neutrons from fission v from Table III.



Takle T. Thermal Neutron Cross Sections
(20°C or 2200 cmfsec)

Material Dﬁ"ﬂ? oy 3 a
nlg/cm™] s i
- 0.330 38.0 -
- 0.460x1073 7.0 -
Li 0.534 71.000 1.4 -
Be 1.850 10.000x107° 7.0 —
- 755600 4.0 -
¢ 1.600 1. 200 4.3 —
= 1.880 10.0 -
- <0.200x10"3 1.2 -
Ma 0.971 0.505 4.0 -
Al 2.700 0.230 1.4 —
K 0.870 1.970 1.5 -
Fe 7.860 2 530 1.0 -
Co 8.900 37.600 7.0 —
Ni 8.900 4.600 17.5 -
Ma 10.200 2 500 7.0 -
«d 8.650 2650000 7.0 —
In 7.280 160,000 2.2 _
zel 37 - 2.700x10% — -
sm' 43 7.700 5.000x10" — -
heH? 11.300 7.00a 12.6 —
y233 12.700 535800 _ 523
p23s 18.700 687000 10.0 540
23t 18.700 2.750 g.2 —
Put=? — 1065000 5.6 75D
Ml — — - 1100
H,D 1.000 0.660 108.0 —
00 1.100 0.930:107 14.3 —
Be0 3.010 3000410 10.0 -




Table I1.

in @ Maxwellian Distribution

Hon-1/v Factars for Absorption Cress-Sections

Temperature [°£)
Element Taon0 5
20 100 20 400 700
233 a,u581.37 008 | 1.og7 | 1.000 | 1.m1m | 1.037
0;=526.91 o0 | oz | i.ma | 1022 | 1.006
235 a,=693.52 |0.975 | 0.95 | 0.938 | 0.918 | ©.805
0~582.78 | 0.975 | 0.956 | 0.938 | 0.915 | 0.898
238, o =2.7] 002 1 1008 | toos | vom | v.0m8
239 _
Pu ] o,1021.10 074§ 1.1e3 | tzao | .01 | 2.879
0 =747.73 050 [ 1.11a b ovuzee | o166 | 2.80
#0, | 0,-30.0 028 | 1.051 | t.osz | 1.153 | 1.296
Table I11: Neutron Regeneration Data.
U= Uz Pu’® Natural
Uranium
14 2.51 2.47 2.90 2.47
n 2.28 2.07 2.10 1.33
o, 0.102 0.192 0.38 0.85
a=—"=
O

EFFECT OF HETEROGENEITY ON THE FUEL UTILIZATION
FACTOR

The fuel utilization factor is defined as the ratio of the number of neutrons
absorbed per unit time in the fuel, to the total number of neutrons absorbed per unit time
in the whole reactor, including fuel, moderator, structure and control elements. For a

lumped system consisting of a fuel region and a moderator region:
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where: V,, V, are the volumes of the fuel and moderator regions, respectively. Then we

can write:
v _
— Lzal ¢l _ (8)
Vl zal ¢1 +V2 Za2 ¢2
or:
1
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1+ éviz&
2a V4

The factor ¢_2/ 51 is called the “disadvantage factor” and is given by rearranging Eqn. 9

as:

4. V.
oS A o



It is a disadvantage since normally, for a lumped system, 32>$1, consequently

¢TZ/ 51>1, and f for a heterogeneous system will be less than for the equivalent

homogeneous one as shown in Fig. 1.
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Fig. 1. Thermal Flux Distributien in Lumped
System Unif Cell.

For a lattice configuration, the first step for the calculation of f is to choose a unit cell

as shown in Fig.2.
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Fig. Z. Umit Cell 1n 2 Cylindrical Rods
Lattice Configuratian.



The next step is to approximate the true shape of the cell by a shape which can be

described by a single dimension, in such a way as to maintain the true volume of the cell.
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Fig. 3. Cylindrical Equivalent of 2 aquare
Unit Cell.

For the cylinder and the square parallelepiped to have the same volume:

rR*L=a’L

from which:

With the problem reduced to one dimension, diffusion theory may now be applied.
The slowing down density (q) is assumed uniform over the region of the cell occupied by
the moderator, and to be zero in the fuel. The diffusion balance equations for this case

will be in the fuel and in the moderator:

D1V2¢1 _za] ¢1 =0

(11)
D2V2¢2 _Zaz ¢2 +Q= 0



where the subscript 1 denotes the fuel, and subscript 2 denotes the moderator.
Dividing by the diffusion coefficients, writing: X’ =Y._/D, and using a cylindrical

coordinates system for the Laplacian operator, Eqn.11 becomes:

d’¢ 1d
;ﬁl_i__ﬁ_ X12¢1 =0

2
;e
—22+__2_ X22¢2 +i =0
d® rdr D,
The solution in the fuel region in terms of Bessel functions is:
¢ = Al (X +DK,(X,;r)=Al,(Xr) (13)

since: D=0, as K, goes to infinity at r = 0, which would lead to an unphysical solution..

The solution in the moderator region is obtained by adding a complementary function

and a particular solution:

4, = Blo<x2r)+CK0(x2r)+zi (14)

a2

Since all the cells are identical and are assumed to constitute an infinite array, there

must be no neutron current from cell to cell; thus:
dd,
habe’} =0 15
ar (R) (15)

Applying this condition to Eqn. 14, we get the relation between the constants B and



dd)zd(rRz) = BX,I,(X,R,))-CX,K,(X,R,) =0,

where we used the Bessel functions the relationships:

I/ (2)=1,(2),
KOl(Z) = _KI(Z)9
We get for the value of C:

o  LXR) o 16
K,(XR)

Thus Eqn. 14 can be rewritten as:

¢2:G[K1(X2Rz)|0(xzr)+ll(szz)Ko(xzr)]+Zq (17)
where:
G-_ B
K/ (X,R,)

Applying the conditions of the continuity of the flux and current at the interface

between the fuel: and moderator, for the flux:

#(R)=4(R),

and for the current

D1¢1’(R):D2¢2,(R1)a (18)

yields two equations for the values of the constants A and G (although for the evaluation

of f, the value of G is not required):



) q
AR = GIK OGR) L (GR)FLOGRIK OGRITF = |

DIAXIII(XIRI): DZGXZ[Kl(X2RZ)Il(X2R1)_ II(XZRZ)KI(XZRI)]

From the second equation in 19, we get the value of G:

A. X,D, . I, (X|R)
X,D, K CXGR)ECGR) =1 (KL R)K (X, R)

Upon substituting the value of G in the first equation in 19, we get the inverse of A as:

2a2

i ['oom)— DX, O ROIK (X RN (X, R) + L (X, RK (X5 R)]

D, X, Ki(XGR) (K R) =1 (XGR)K((X,R)

1
— K [(20
" q (20)

We recall now the definition of

and estimate the reaction rate per unit length of the cell. The absorption rate in fuel is just

the neutron current into regionl, or:

A = 2R -J(R)zzﬂR[Dl d"’;j(rm}zna .ADX,1,(X,R)

The total absorption per unit length of cell is just the total source strength per unit length:
A=7(R°-R")q,

thus:



1__mR-RY) _aX,(R'-RY) 1 1)
f~27RD,I,(X,R)A 23, RI,(X,R) A

Inserting the value of 1/A from Eqn. 20 into Eqn. 21:

LV Zp [ XRGR) o (RE =R TOGRIK OGR) + Ky OGRILGR)
fViz,l 2 LXR)D ™ 2R LOGRIK(XGR) = K (KR (GR)

Thus 1/f consists of two terms one which involves X, of the fuel only, and the other X,

of the moderator only. The general form of Eqn. 22 is:

V3
1o e gy (23)

f 1*al

The functions E and F are listed for different geometries in Table IV.

If the fuel is surrounded by a thin layer of nonfissionable material of volume V, and

absorption cross section X, its effect can be included in the expression for 1/f as:

L[ YeRe Vi e gy (24)
f Vlzal

we imply here that the effect of the layer on the flux distribution is negligible.



Table IY¥. The Functions E.F for Mfferent Geometries

Gegmeiry F E
2 2
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For Slab, R1 is the half-thickness of fuel, Rz is the half-thickness of the cell.

EFFECT OF HETEROGENEITY ON THE RESONANCE ESCAPE
PROBABILITY

The expression for the resonance escape probability for a homogeneous system has

been derived as:

Naleff
= - 25
p eXp[ 5 J (25)

S

where: | is the effective resonance integral.

In case of heterogeneous systems, the resonance absorption inside the fuel is much
less than the absorption at the surface. When the fuel material has low moderating
power, the energy regions depleted by resonance absorption at the surface are not
replenished by moderation, and this “self-shielding” of the fuel core against resonance
absorption is significant. This effect makes possible the construction of a heterogeneous
reactor using uranium as a moderator. If a homogeneous system is used, criticality

cannot be achieved.



A semi-empirical method is used for lumped systems since a well-known resonance
structure does not exist. On theoretical and experimental grounds the rate of resonance

absorptions per unit time per unit energy interval for uranium lumps of simple shape is

given by:
- — S
¢1 N1V1a+¢sN1V1b’_
M
where: ¢TS is the average flux per unit energy interval at the surface of the lump,

S is the surface area of the lump,

a, b are experimentally determined constants,
V, is the volume of the lump.

These absorptions would lead to a decrease in the slowing-down density given by a

factor:

v, % (26)

From which we can write:

dg — — S
Vzd_g:¢1N1V1a+¢sN1V1b'ﬁ (27)

Recalling the expression of slowing-down density:
q=¢62,E (28)

we can write:



- - S
dq ¢1 N1V1a+ ¢sN1V1b'M

s _ =
q V9,82,

Recalling the definition of resonance escape probability, and integrating between the

limits E, and E,,, we get:

O o | NVi (4 dE S 4| dE
p= —eXp[ {v@ Szg% = MI D (29)

If it is assumed that:

i ~ ¢= ~ constant ,
¢ 9
we get:
—
poexp —| A o B (30)
Vzgzzsz ¢2 En E
where:

The values of A and u are given here for Natural Uranium and some of its

compounds:



Material Al el
cm

U 9.25 24.7
Uzl 12.00 20.0
g, 11.81 221
UF. 14.60 16.3

It still remains to estimate the ratio: ¢_1/¢_2 In analogy to the previously derived

disadvantage factor for the thermal utilization factor:

z
Disadvantage factor =¢(i -1),

a2 "2 f

We define a “resonance utilization factor” f,, and can write:

ﬁ: Z:azvz . 1 _ z:azvz . 1
¢2 Za1V1 (i—l) Zalvl VZZaZ F+(E—1)
fr 1“al
Thus:
b S vl (31)
> F4+ AL (E-D)
a2V

which can be substituted into Eq. 30 to yield:

1
p=exp -
Vzégzzst +Za1§2252(E_1)
valleﬁ zaZNlIeff

(32)




In Eqn. 32, £, denotes a fictitious absorption cross section which is really a

slowing-down cross section expressing the probability that a neutron will be slowed
down from the resonances energy range.
As previously derived in the context of Fermi Age Theory where it was referenced as

a removal cross section, it is given by:

5, = (33)

The average absorption cross section in the absorber is:

dE

. _N]IO'aeffE_Nlleff (34)
A dE_E,
= In—2
E th
From Eqn. 33 and Eqn. 34:
)y N
al — 1 . Ieff (35)
ZaZ é:zzaz
Substituting from Eqn. 35 into Eqn. 32, we finally get:
1
P = exp(- ) (36)
V,&Z,F
252 s2 + (E _ 1)
NIVI I eff

THE THERMAL DIFFUSION COEFFICIENT



For a homogeneous medium the following relationship for the diffusion coefficient,

based on transport theory, can be used:

D ! _ (37)
— sz

33, (=) 1— 4 Za 2o Mo

52, % (l_ﬂo)

which reduces, for a weakly absorbing medium to:

D:;_:ﬂ (38)
3 (1-p) 3

For heterogeneous reactors, the ratio of moderator volume to fuel volume is large, so
that the diffusion coefficient of the moderator can be used in the calculations. If this is
not true, the following expression which accounts for the disadvantage factor can be

used:

1 1 V,4,+V.4

5 = = — — —
32” 3 VZ ¢22tr2 +Vl ¢lztrl

(39)

Recalling the expression for the disadvantage factor:

4 VaZ,

é: %_Vlzal l_f’

where f is the thermal utilization factor, we can write it as:

1+§£

V2

y (40)
z:’[r2 + é:\TIEtrl

2

D=

1
3



Table V lists values of the transport mean free path for some materials of interest.

THE THERMAL DIFFUSION AREA

The thermal diffusion area is given by:

L* = (41)

| of

We have already derived an expression for D, , we can write a similar expression for

> as:

VvV, 2
— — T V(+ )
;zvzzazﬁ +V12a1¢1 _ Vz Zaz Vz f

= =3,
V, ¢, +V, 4, V, +V,& PV, +VET -

a



Table ¥. Transport Mean-fres Path for Some
Materials of Intersst

Material Thermat A, [em]
Hy0 0.4B
nzn {u.1sx&20} 2.65
Be [p=1.85} 1.43
Bed (p=2.60) 0.90

Table ¥I. Thermal Diffusion Length for
Different Materfals

Material L [cm]
HED 2.85
DZD {G,IEEHED} 116.00
Be [p=1.85} 20.80
Bed {p=2.59) 29.00
Graphite {p=l_60) o4 .40
Th (p=11.2} 2.70
Thﬂz (p=161 4.10
U {p=18.9] 1.55
U0p (p=&) 3.70

If V, >>V,&, then we can write:

I, ~ (f_azf : (2)

If the diffusion coefficient is taken as being the one for the moderator, then we get:

L2=;—2(1—f)=L§(1—f) (43)

a2

where: L] is the diffusion area of the moderator. Some experimental values for L are

given in Table VI.



THE FAST FISSION EFFECT

Non-thermal fissions can occur in the resonance region (e.g. in U*?, U and Pu*®),
or in the fast region in materials which have a fission threshold in the MeV range (e.g. in
U** and Th™?).

For heterogeneous systems the calculation of the fast fission factor must account for
two phenomena:

1) The probability that a fast neutron born in the fuel lump makes a collision before

escaping.

2) The contribution this neutron makes to the fast effect, as well as the contribution

of subsequent generations by cascade effects.

Let us introduce:

P, = [probability that a fast neutron produced in the n-th generation fast

fission makes a collision before escaping from the fuel lump]

>
Thus, (1-P,) is the probability of escaping from the fuel lump, and Z_I P, is the

t

probability of a reaction i, where:
z, :Zy +2 +Z, 2

For the neutron produced in the first generation of fissions, we get the following

number of fast neutrons for each first generation neutron:

Vi + 2
Pl |=Rr
z:t



where we imply that an elastic-scattering reaction has a negligible effect in reducing the

neutron energy. From that first generation, some neutrons are lost by escapes, inelastic

collisions, and radiative captures and:

[fraction of first generation neutrons entering slowing-down process]=(1-F,) +

For the following generations the following cascading process occurs:

- -

3
n F)l
z

t

Nertrons peutrons available for
feneration Arailable in 5 1owi ng-down
Fast Neutrans | Cascade Process
k.
1 - |
1 rP 101 Py + I, F'.l}
2 rP rip p . [1-P +E”'P]
1 12 TFyLi-Fg T, 2
3 vZp.p wPp_pp r2p P [1-P +Eiﬂp]
1 & 1723 1z 3 Et 3
n +"1p P e p P Tp P_[1-P +E"“p
17" "n-l 1 1" "p-1t" g E_t r|1

By adding up the terms in the lost column, we get:

e;“E{I—F’lJrZ
X

If we assume that P, = P for all generations, we get:

in

t

z
Pl}+rPl[l—P2+ S

in

t

¥
P2}+...+ r”‘Pl...Pn_l[l— P, + 2‘”

t

Pn}t

.. (44)



)
g:[l—P+-£”PJ@+rP+r2P2+HA4“”P”*+”)

t

1
1-rP

>
= 1—P+iP]- VP <1 (45)

t

l-p+2np

t
Vi +2
1-P-| ———
Zt

Subtracting the denominator from the numerator on both sides of Eqn. 45, we get:

¥ V2 D
T e e
Z:'[ z:t z:t

Vi + 2
1-P —————
Zt

e=1+ L ox, 43, -8)

B B
ZI

c—1=

1
e=1+ I -Z—t(zswzf—zin—27—2f+2m—zs)
1-p 1%
ZI

And finally:

) )
e=1+ P .—f{v—l——’) (46)



We now need to calculate the probability of a collision P. Consider a fuel rod of

radius R as shown in Fig. 4. We have already deduced:

(1-P)=Number of neutrons escaping from lump / Number of neutrons produced in

the fuel lump

Fig. 4. Fuel Red {ross section

The denominator is simply:

[v2 g(rav

\%
Writing down the numerator, we get:

cos @

j Ivzfgzﬁ(r)-e‘ztp—zdv-ds
p=1-3V A7p

jvzf¢(r)dv

\%

(47)



where we are considering the number of neutrons produced in volume element dV,

attenuated by the factor €, and by the inverse square distance factor . We are

2

4o
correcting for the cosine of the angle between the normal to the unit area dS and the
direction of the outgoing neutrons. An integration over the surface and over the volume
is then carried out.

The integration of Eqn. 47 can be tedious and depends on the treated geometry.
Values of P for different geometries are shown in Fig. 5 where x is the inverse of the
diffusion length, and X corresponds to the total cross section. If we assume that the flux
is constant in the fuel rod, and that the radius of the rod is small compared to the mean

free path, then we can write:

Pngt-R (48)

Fig. 5. Dependence of P on IR and /I, where
y is the inverse of the diffusion length,
T s the total cross section, and B is
the radius of the fuel pin.

OPTIMIZATION OF LATTICE CONFIGURATION



For a given unit cell pitch, the resonance escape probability decreases as the rod
radius is increased, whereas the thermal utilization factor increases to saturation.
For a given rod radius, the resonance escape probability increases with larger cell

radius, whereas the thermal utilization factor decreases.
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Fig. Qualitative Behayior of p and f as a

function of lattice parameters

Thus, it is evident that conditions which favor an increase in f will cause a decrease in
p, and vise versa. In the design of a heterogeneous lattice we must then find particular
arrangement of a fuel and moderator which gives a maximum value of the four factor

formula for the infinite medium multiplication factor:

k, =nepf (49)

The procedure to be used is thus to consider a number of fuel-moderator lattices, with
various rod radii and lattice spacings, and construct a surface for k, as a function of
these two parameters. Then choose the lattice that will maximize the value of k. This

optimal value occurs normally when the value of p and f are decreasing or increasing at

the same rates.
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