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INTRODUCTION 
 

Most reactor systems nowadays are of the heterogeneous type, where the fuel and 

moderator/coolant are lumped and do not form a homogeneous mixture.  The criticality 

parameters of interest such as the regeneration factor (η) fuel utilization factor (f) and the 

resonance escape probability (p) used in the four factor formula for the infinite medium 

multiplication factor will have to account in their calculation of this fact. 

 

CROSS-SECTIONS HOMOGENIZATION IN HETEROGENEOUS 

SYSTEMS 
 

We can mix the different material regions in a heterogeneous system and treat it 

as a homogeneous system only if the diffusion length (L) for the homogenized region is 

larger than any characteristic dimension (d) of the system, for thermal neutrons: 

 

L >> d 

 

Similarly for fast neutrons, the following condition must be satisfied: 

 

dτ >> , 

 

where: τ is the slowing down area, or age. 



In any homogenization, we require the preservation of reaction rates in the 

heterogeneous and homogenized systems.  This can be expressed as: 
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where: V  is the total volume of the reactor, 

φ  is the average flux in the system: φ = (
V

dV r)φ∫  

∑  is a homogenized cross section. 

For several m separate regions, Eqn. 1 can be written as: 
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which is a requirement that the cross sections are to be flux weighted and volume 

weighted in obtaining homogeneous cross sections.  If the fluxes are reasonably constant, 

iφ φ≈  and we can use only volume weighting: 
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The factor ( / )iφ φ  is often referred to as the self-shielding factor. 

 

EFFECT OF HETEROGENEITY ON THE REGENERATION 

FACTOR 
 

The quantity η is the number of fission neutron produced per neutron absorbed in the 

fuel.  In a homogeneous reactor, “fuel” means the fissionable isotope.  In a lumped 



reactor, “fuel” now refers to the fissionable isotope and any isotopes which are mixed 

with the fissionable isotope.  If the fuel is lumped, it may consist of number of isotopes, 

some of which are fissionable, and some are not.  The average flux may not be the same 

in all isotopes considered as part of the fuel.  In this case, the regeneration factor is given 

by: 
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where iφ  is the average flux over the i-th isotope. 

If the various isotopes are intimately mixed, iφ ≈  constant, and Eqn. 4 becomes: 
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As an example, for natural uranium: 
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where:  
235

238

( ) 10.00717
( ) 140

N Ur
N U

= = ≈ . 

Since cross section data bases for use in thermal reactors list the 2200 [m/sec] values, 

these have to be modified by the non-1/v factors (g), and the temperature and Maxwell 

distribution factors: 
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where: 
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for a velocity Maxwellian distribution: 
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g is the non-1/v factor, assuming well-moderated systems.  It is a function 

of temperature. (Note that scattering cross sections are not subject to this 

correction.) 

t is the medium temperature in degrees Celcius (≈20  at room  

temperature). 

o C

Since =1.002, and =0.975, at room temperature, we get: 238(g U ) )235(g U
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The cross section data were taken from Table I, the non-1/v factors from Table II and the 

value of the average number of neutrons from fission ν  from Table III. 



 



 
 

Table III: Neutron Regeneration Data. 

 

 U233 U235 Pu239 Natural 

Uranium 

ν  2.51 2.47 2.90 2.47 
η  2.28 2.07 2.10 1.33 

c

f

σα
σ

=  
0.102 0.192 0.38 0.85 

 

 

EFFECT OF HETEROGENEITY ON THE FUEL UTILIZATION 

FACTOR 
 

The fuel utilization factor is defined as the ratio of the number of neutrons 

absorbed per unit time in the fuel, to the total number of neutrons absorbed per unit time 

in the whole reactor, including fuel, moderator, structure and control elements.  For a 

lumped system consisting of a fuel region and a moderator region: 
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Let: 
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where: ,  are the volumes of the fuel and moderator regions, respectively. Then we 

can write: 
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or: 
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The factor 2 1/φ φ  is called the “disadvantage factor” and is given by rearranging Eqn. 9 

as: 
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It is a disadvantage since normally, for a lumped system, 2 1φ φ> , consequently 

2 1/φ φ >1 , and f for a heterogeneous system will be less than for the equivalent 

homogeneous one as shown in Fig. 1. 

 

 
For a lattice configuration, the first step for the calculation of f is to choose a unit cell 

as shown in Fig.2. 

 

 



 

The next step is to approximate the true shape of the cell by a shape which can be 

described by a single dimension, in such a way as to maintain the true volume of the cell. 

 

 
 

For the cylinder and the square parallelepiped to have the same volume: 

 
2 2R L a Lπ =  

 

from which: 

 

aR
π
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With the problem reduced to one dimension, diffusion theory may now be applied. 

The slowing down density (q) is assumed uniform over the region of the cell occupied by 

the moderator, and to be zero in the fuel.  The diffusion balance equations for this case 

will be in the fuel and in the moderator: 
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where the subscript 1 denotes the fuel, and subscript 2 denotes the moderator. 

Dividing by the diffusion coefficients, writing: 2 /aX D= ∑ , and using a cylindrical 

coordinates system for the Laplacian operator, Eqn.11 becomes: 
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The solution in the fuel region in terms of Bessel functions is: 

 

1 0 1 0 1 0 1( ) ( ) (AI X r DK X r AI X r)φ = + =   (13) 

 

since: D = 0, as  goes to infinity at r = 0, which would lead to an unphysical solution.. 0K

The solution in the moderator region is obtained by adding a complementary function 

and a particular solution: 
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Since all the cells are identical and are assumed to constitute an infinite array, there 

must be no neutron current from cell to cell; thus: 
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Applying this condition to Eqn. 14, we get the relation between the constants B and 

C: 
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where we used the Bessel functions the relationships: 
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We get for the value of C: 
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Thus Eqn. 14 can be rewritten as: 
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where: 
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Applying the conditions of the continuity of the flux and current at the interface 

between the fuel: and moderator, for the flux: 

 

1 1( ) ( )R Rφ φ1 2= , 

 

and for the current 
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yields two equations for the values of the constants A and G (although for the evaluation 

of f, the value of G is not required): 
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From the second equation in 19, we get the value of G: 
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Upon substituting the value of G in the first equation in 19, we get the inverse of A as: 
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We recall now the definition of f: 
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and estimate the reaction rate per unit length of the cell. The absorption rate in fuel is just 

the neutron current into region1, or: 
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The total absorption per unit length of cell is just the total source strength per unit length: 
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thus: 
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Inserting the value of 1/A from Eqn. 20 into Eqn. 21: 
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Thus 1/f consists of two terms one which involves  of the fuel only, and the other  

of the moderator only.  The general form of Eqn. 22 is: 
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The functions E and F are listed for different geometries in Table IV. 

If the fuel is surrounded by a thin layer of nonfissionable material of volume  and 

absorption cross section  its effect can be included in the expression for 1/f as: 
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we imply here that the effect of the layer on the flux distribution is negligible. 



 
 

EFFECT OF HETEROGENEITY ON THE RESONANCE ESCAPE 

PROBABILITY 
 

The expression for the resonance escape probability for a homogeneous system has 

been derived as: 
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where:  is the effective resonance integral. effI

In case of heterogeneous systems, the resonance absorption inside the fuel is much 

less than the absorption at the surface.  When the fuel material has low moderating 

power, the energy regions depleted by resonance absorption at the surface are not 

replenished by moderation, and this “self-shielding” of the fuel core against resonance 

absorption is significant.  This effect makes possible the construction of a heterogeneous 

reactor using uranium as a moderator.  If a homogeneous system is used, criticality 

cannot be achieved. 



A semi-empirical method is used for lumped systems since a well-known resonance 

structure does not exist.  On theoretical and experimental grounds the rate of resonance 

absorptions per unit time per unit energy interval for uranium lumps of simple shape is 

given by: 

 

1 1 1 1 1s
SN V a N V b
M

φ φ+ ⋅   

 

where:  sφ  is the average flux per unit energy interval at the surface of the lump, 

S is the surface area of the lump, 

a, b are experimentally determined constants, 

1V  is the volume of the lump. 

These absorptions would lead to a decrease in the slowing-down density given by a 

factor: 
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From which we can write: 
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Recalling the expression of slowing-down density: 
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we can write: 
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Recalling the definition of resonance escape probability, and integrating between the 

limits  and , we get: 0E thE

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

Σ
−== ∫∫

00

22

1

222

11

0

exp
E

E

s
E

Es

th

thth
E
dEb

M
S

E
dEa

V
VN

q
q

p
φ
φ

φ
φ

ξ
 (29) 

 

If it is assumed that: 
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we get: 
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where: 
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The values of A and µ  are given here for Natural Uranium and some of its 

compounds: 

 



 
 

It still remains to estimate the ratio: 21 /φφ .  In analogy to the previously derived 

disadvantage factor for the thermal utilization factor: 
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We define a “resonance utilization factor” , and can write: rf
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which can be substituted into Eq. 30 to yield: 
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In Eqn. 32,  denotes a fictitious absorption cross section which is really a 

slowing-down cross section expressing the probability that a neutron will be slowed 

down from the resonances energy range. 

2aΣ

As previously derived in the context of Fermi Age Theory where it was referenced as 

a removal cross section, it is given by: 
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The average absorption cross section in the absorber is: 
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From Eqn. 33 and Eqn. 34: 

 

eff
aa

a IN
⋅

Σ
=

Σ
Σ

22

1

2

1

ξ
      (35) 

 

Substituting from Eqn. 35 into Eqn. 32, we finally get: 
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THE THERMAL DIFFUSION COEFFICIENT 
 



For a homogeneous medium the following relationship for the diffusion coefficient, 

based on transport theory, can be used: 
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which reduces, for a weakly absorbing medium to: 

 

3)1(3
1

0

tr

s

D
λ

µ
=

−Σ
=      (38) 

 

For heterogeneous reactors, the ratio of moderator volume to fuel volume is large, so 

that the diffusion coefficient of the moderator can be used in the calculations. If this is 

not true, the following expression which accounts for the disadvantage factor can be 

used: 

 

111222

1122

3
1

3
1

trtrtr VV
VVD

Σ+Σ
+

=
Σ

=
φφ
φφ

    (39) 

 

Recalling the expression for the disadvantage factor: 
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where f is the thermal utilization factor, we can write it as: 
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Table V lists values of the transport mean free path for some materials of interest. 

 

THE THERMAL DIFFUSION AREA 
 

The thermal diffusion area is given by: 
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We have already derived an expression for , we can write a similar expression for thD
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If ξ12 VV >> , then we can write: 
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If the diffusion coefficient is taken as being the one for the moderator, then we get: 
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where:  is the diffusion area of the moderator. Some experimental values for L are 

given in Table VI. 
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THE FAST FISSION EFFECT 
 

Non-thermal fissions can occur in the resonance region (e.g. in U233, U235 and Pu239), 

or in the fast region in materials which have a fission threshold in the MeV range (e.g. in 

U238 and Th232). 

For heterogeneous systems the calculation of the fast fission factor must account for 

two phenomena: 

1) The probability that a fast neutron born in the fuel lump makes a collision before 

escaping. 

2) The contribution this neutron makes to the fast effect, as well as the contribution 

of subsequent generations by cascade effects. 

Let us introduce: 
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For the neutron produced in the first generation of fissions, we get the following 

number of fast neutrons for each first generation neutron: 
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where we imply that an elastic-scattering reaction has a negligible effect in reducing the 

neutron energy. From that first generation, some neutrons are lost by escapes, inelastic 

collisions, and radiative captures and: 
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For the following generations the following cascading process occurs: 

 

 
 

By adding up the terms in the lost column, we get: 
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If we assume that  for all generations, we get: PPn =
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Subtracting the denominator from the numerator on both sides of Eqn. 45, we get: 
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⎛
Σ

Σ+Σ
−

+= ν
ν

ε 1

1
1  

 

Substituting for  from Eqn. 43, we get: tΣ

 

( )sinfinfs
t

t

sfP
Σ−Σ+Σ−Σ−Σ−Σ+Σ

Σ
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

Σ+Σ
−

+= γν
ν

ε 1

1
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And finally: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Σ

Σ
−−⋅

Σ

Σ
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

Σ+Σ
−

+=
ft

f

t

sfP

P γν
ν

ε 1
1

1    (46) 



 

We now need to calculate the probability of a collision P. Consider a fuel rod of 

radius R as shown in Fig. 4. We have already deduced: 

 

(1-P)=Number of neutrons escaping from lump / Number of neutrons produced in 

the fuel lump 

 

 
 

The denominator is simply: 

 

∫ Σ
V

f dVr)(φν  

 

Writing down the numerator, we get: 

 

∫

∫∫
Σ

⋅⋅Σ
−=

Σ−

V
f

V
f

S

dVr

dSdVer
P

t

)(
4
cos)(

1
2

φν
πρ
θφν ρ

   (47) 

 



where we are considering the number of neutrons produced in volume element dV, 

attenuated by the factor , and by the inverse square distance factor ρte Σ−
24

1
πρ

. We are 

correcting for the cosine of the angle between the normal to the unit area dS and the 

direction of the outgoing neutrons.  An integration over the surface and over the volume 

is then carried out. 

The integration of Eqn. 47 can be  tedious and depends on the treated geometry.  

Values of P for different geometries are shown in Fig. 5 where x is the inverse of the 

diffusion length, and Σ  corresponds to the total cross section. If we assume that the flux 

is constant in the fuel rod, and that the radius of the rod is small compared to the mean 

free path, then we can write: 

 

RP t ⋅Σ≈
3
4        (48) 

 

 
 

OPTIMIZATION OF LATTICE CONFIGURATION 



 

For a given unit cell pitch, the resonance escape probability decreases as the rod 

radius is increased, whereas the thermal utilization factor increases to saturation. 

For a given rod radius, the resonance escape probability increases with larger cell 

radius, whereas the thermal utilization factor decreases. 

 

 
 

Thus, it is evident that conditions which favor an increase in f will cause a decrease in 

p, and vise versa.  In the design of a heterogeneous lattice we must then find particular 

arrangement of a fuel and moderator which gives a maximum value of the four factor 

formula for the infinite medium multiplication factor: 

 

k pfηε∞ =       (49) 

 

The procedure to be used is thus to consider a number of fuel-moderator lattices, with 

various rod radii and lattice spacings, and construct a surface for  as a function of 

these two parameters.  Then choose the lattice that will maximize the value of .  This 

optimal value occurs normally when the value of p and f are decreasing or increasing at 

the same rates. 

∞k

∞k
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