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INTRODUCTION 
 

We wish to analyze the process by which neutrons scatter upon collision with the nuclei of 
different materials.  The intended use is in shielding, dosimetry, and criticality calculations.  The 
energy loss per collision would characterize the properties of different energy moderating 
materials such as graphite, light water, and heavy water. 

The kinematics of two-body collisions processes are best described using the Center of Mass 
system (CM), rather than the Laboratory (LAB) system of coordinates.  The reason is that 
scattering is isotropic in the CM frame, and it is easier described in it. 

We then introduce the concept of a microscopic and macroscopic neutron cross section and 
describe the use of compiled cross sections data to estimate collision rate densities and reaction 
rates. 
 
RELATIONSHIPS BETWEEN VELOCITIES AND ENERGIES IN CM 
AND LAB SYSTEMS 
 

The CM system is characterized by: 
1. The total momentum in the CM system is zero. 
2. The magnitudes of the CM velocities do not change in a collision.  Their velocity vectors 
are rotated through the CM scattering angle. 
3. Cross sections are calculated in the CM system, but are measured and used in the LAB 
system. 
4. The total energy in the CM system is always less than in the LAB system.  The energy 
difference is taken up by the center of mass’ motion itself. 

Let us consider: 
Mass of target nucleus = A 
Mass of neutron = 1 
Target nucleus is stationary, implying that 0VL =  

We can now deduce the relationships between velocities and energies in the CM and LAB 
systems. 

The collision coordinates in the LAB and CM system before and after a collision are shown 
in Figs.1 and 2, as well as the relationships between the scattering angles in the LAB and the CM 
frames. 

The Center of Mass velocity, is obtained by a momentum balance before and after a collision 
as:  
 

1 1CM L L( A)v v A V+ = ⋅ + ⋅  
 



 
 

 
 
By taking LV  = 0, we get: 
 



1
1CM Lv v

A
=

+
       (1) 

 
The neutron velocity in the center of mass system using Eqn. 1 is: 
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From which: 
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The target velocity in the Center of Mass system is from Eqn. 1: 
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where again we took LV  = 0. 

The total momentum in CM frame is by using Eqns. 2 and 3: 
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The total kinetic energy in the LAB system is: 
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where LV  was taken as zero. 

The total kinetic energy in the CM system is: 
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Using Eqns.2 and 3 we get: 
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Thus: 
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where: 
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is the reduced mass. 

The relationship between the LAB and CM velocities from Eqns 4 and 5 is: 
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Thus EC < EL, since the center of mass motion itself takes the energy difference. 

Applying conservation of momentum in the CM system before and after a collision 
yields: 
 

Before collision             After collision

1 1         C C C C

' '
v AV           AV v        ⋅ + = + ⋅

 

 
Rewriting this vector equation component-wise in the x and y directions: 

 
    cos cos' '

C C C c Cv AV -AV v c θ θ− = +     (7) 
 

c0 sin si' '
C c C - AV v nθ θ= +      (8) 

 
Equation 8 implies that: 
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Substituting in Eqn. 7 we get: 
 

Cv AV=        (10) 
 

Then using Eqn. 3 we get: 
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Applying conservation of energy in the CM system yields: 
 

2 2 21 1 1 1.1. .1.
2 2 2 2C C Cv AV v' AV'+ = + 2

C  

 
Substituting for vc and v'c from Eqns.9 and 10: 
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which yields: 
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Substituting in Eqns. 9 and 10: 
 

Cv v'=        (13)
 

Thus the velocities do not change in the CM frame. 
 
RELATIONSHIP BETWEEN SCATTERING CROSS SECTION IN LAB AND CM 
FRAMES 
 

From Fig.3, we can write for the horizontal and vertical components: 
 

Horizontal:  cos cos
C

'
L L CMv v v Cθ θ= +      (14) 

 
Vertical:   sin sin

C

' '
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Dividing the Left Hand Side (LHS) of both equations, we get: 
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Here we used from Eqn.1:  1
1CM Lv v
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and from Eqns.2,13: 
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Now:  

 
L L L L CM C C C( )sin d ( )sin dσ θ θ θ σ θ θ θ⋅ = ⋅  

 
where:  L L( )σ θ  is the differential scattering cross section in the LAB system, 
 

CM C( )σ θ  is the differential scattering cross section in the CM system. 
 

Thus:  
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From Eqns.15 and 13: 
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Thus, from Eqn. 11: 
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Substituting in Eqn.17: 
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Differentiating Eqn.16 with respect to Lθ , we get: 
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Thus: 
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To get an expression for  in terms of Lθ

2cos Cθ , we use Eqn.14: 
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by use of Eqns. 1, 11 and 13. 
 

Thus:  
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Substituting Eqn.20 into Eqn.19, we get: 
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Substituting Eqn.21 into Eqn. (17)': 
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To get the value of 3'( )L

L

v
v

 we use the triangular relationship from Fig. 3: 
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Substituting for from Eqn.1, using 

CM
v 'Cv vC= , and substituting for vL from Eqn.11, we get: 
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Substituting Eqn.22 into Eqn. (17)'', we get: 
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Finally: 
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which relates the scattering cross sections in the LAB and CM systems. 



 
RELATIONSHIP BETWEEN THE INITIAL AND FINAL ENERGIES 
 

To relate the final and initial particle energies in the LAB system, we use Eqn. 22: 
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Defining the collision parameter: 
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And: 
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which relates the initial and final energies for a collision. 

 
SPECIAL CHARACTERISTICS OF PARTICLES COLLISIONS ENERGY 

TRANSFER 
 
 Equation 26 describing the relationship between the initial and final energy of a neutron 
after collision with a nucleus possesses several important characteristics: 
 

1. It implies that the energy transfer from neutron to nucleus is related to the scattering angle 
in the CM system. 
For the case of no collision we have 0Cθ = , then: 

 
'E E= . 

 
2. The maximum energy loss occurs in a back scattering collision: . 180o

Cθ =
Then: 

 



'E Eα= . 
 

The maximum energy loss would be: 
 

max ' (1E E E E E )Eα α∆ = − = − = −  
 

3. Not only a neutron cannot gain energy in an elastics collision with a stationary  
nucleus (E'<E), but is cannot emerge with an energy E' less than the value of Eα . 

 
RELATIONSHIP BETWEEN THE SCATTERING ANGLES Cθ  AND Lθ  
 

By inspection of Fig.3 we can write using Eqns. 1 and 2: 
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Substituting for v'L from Eqn.22, we get: 
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thus: 
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For high mass number elements such as Uranium, A>>1, the second term in the numerator, and 
the second and third terms in the denominator are small, then: 
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and the CM and LAB frames coincide to each other. 
 
THE AVERAGE COSINE OF THE SCATTERING ANGLE 0µ  
 

We can write in the LAB system: 
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where: 
 

2 sin C Cd dπ θ θΩ = , 
 
is an element of solid angle. 

Even though diffusion is isotropic in the CM frame, it is not so, in general, in the LAB 
frame. 

The departure from isotropic scattering is measured in terms of 0cos Lθ µ= , where: 
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Now, from a table of integrals: 
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This relationship applies for elements other than hydrogen, that is for A not equal to unity. 
 
THE SCATTERING PROBABILITY DISTRIBUTION FOR ELASTIC 
SCATTERING FROM STATIONARY NUCLEI 
 

Since scattering is isotropic in CM system, the probability: 
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can be expressed using Fig. 4 as: 
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From Eqn. 26: 
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Thus: 
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Since dE' is negative, P(E') is positive and equal to: 
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and the collided neutron energy will be between E and Eα . This is shown in Fig.5. The neutron 
has an equal probability of falling between the energies E'=E and E'= Eα . 
 
AVERAGE ENERGY OF NEUTRON AFTER A COLLISION 
 



This, using Eqn. 29 can be written as: 
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Thus: 
 

' (1 )
2
EE α= +        (30) 

 
THE AVERAGE LOGARITHMIC ENERGY DECREMENT PER 
COLLISION 
 

The average value of decrease of the natural logarithm of neutron energy in a collision is: 
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Its utility is that it is independent of the neutron energy as shown below: 
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Making the change of variable: 
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From which: 
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But the collision parameter is: 
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When A is large, (A>>1), for heavy elements: 
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by considering that the value of 1 in the numerator is small relative to the other terms. 

For A>10 an expression correct to about 1% fitting experimental data is: 
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In the case of mixture of elements in a moderator, the individual values of ξ  are weighed 

by the scattering cross sections of each component to obtain its average value over the mixture: 
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THE AVERAGE NUMBER OF COLLISIONS IN A MODERATOR 
 

To slow down from energy ''E E  to energy ''E ''E  the number of neutron collisions can 
be estimated from: 
 

'ln
''

E
EN
ξ
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SLOWING DOWN POWER AND MODERATING RATIOS 
 

These moderator parameters are defined as: 
 

Slowing down power = sξ∑       (38) 
 
This is a measure of how efficient a material is in slowing-down the neutron energy. 



 

Moderating ratio = s

a

ξ∑
∑

      (39) 

 
This is a measure of the efficiency of moderation without absorption. 

Table 1 compares the values of the slowing down power and the moderating ratios for 
several materials. Deuterium used in heavy water distinguishes itself as a superior moderator. 
Nevertheless, carbon as graphite, light water and beryllium are also used as neutron moderators. 
 

Table 1: Properties of major moderator materials. 
 

 
 

Element 

Mass 
Number 

A 

Average 
Logarithmic 

Energy 
decrement 

ξ 

Average 
Number 

of 
Collisions 

N 

Macroscopic 
Absorption 

Cross 
section 
Σa

Slowing 
Down 
Power 
ξΣs

Moderating 
Ratio 
ξΣs /Σa

H 1 1 18 0.0792 1.53 72.0 
D 2 0.725 25 0.0009 37.0 12,000.0 

He 4 0.425 43 0.0 0.000016 83.0 
Li 7 0.268 67 71.0 0.176 159.0 
Be 9 0.209 80 0.008 - - 
B 11 0.176 103 780.0 - 170.0 
C 12 0.158 115 0.005 0.064 - 
O 16 0.120 150 0.0 - - 

 
THE LETHARGY OR LOGARITHMIC ENERGY DECREMENT 
 

This is defined as: 
 

0ln Eu
E

=         (40) 

 
where is arbitrary reference energy corresponding to zero lethargy (e.g. 10 MeV). 0E

The lethargy of a neutron increases as it is slowed down. The lethargy variable allows the 
expression of the neutron energy E as a dimensionless variable. 

The lethargy change can be written as: 
 



 
 

1
2 1

2

ln Eu u u
E
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From Eqn. 40: 
 

0
uE E e−=         (42) 

 
It is evident that ξ  can be regarded as the average change in the lethargy of a neutron per 

collision. Regardless of its energy, a neutron suffers the same number of collisions for the same 
specified change in lethargy. Figure 6 shows that a neutron loses considerably more energy in 
earlier scatterings than in later ones. 
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EXERCISE 
 
1. Carry out the detailed derivation proving that, for elements other than hydrogen, the 
mean value of the cosine of the scattering angle for neutron collisions is given by: 
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