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INTRODUCTION 
 
 We use the Breit-Wigner single level resonance formula for the absorption cross 
section as a function of energy, and the expressions for the slowing down density to 
derive an equation for the probability for a neutron to escape being absorbed in the 
resonance region as it slows down to thermal energies.  The resulting expression for the 
resonance escape probability forms one term in the four factor formula for the infinite 
medium multiplication factor.  Expressions for the resonance integral for homogeneous 
reactors are also derived. 
 
THE BREIT-WIGNER SINGLE LEVEL RESONANCE FORMULA 
 

For a single level resonance, the Breit-Wigner formula can be written as: 
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where: σ  and E 0  are the cross section and energy at the peak of the resonance, and Γ is 

the width of the resonance at half maximum, as shown in Fig. 1. 
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Fig. 1 Single-level resonance. 

 



For a broad resonance, Γ > (E - E ), 0
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which is the known 1/v dependence, e.g. Boron. 

 

RESONANCE ESCAPE PROBABILITY 
 

The probability of escaping absorption in the resonances while slowing down is 

called the resonance escape probability and is by definition: 
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where q  is the slowing-down density at the fission energy. 0

 In an infinite medium the change in slowing down density in an energy interval 

dE is equal to the number of absorptions in dE, or: 
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 We have proven before that the number of collisions per unit volume per unit time 

in the absence of absorptions was: 
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 If we now include the absorptions, we can write: 
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Dividing Eqns. 3 and 4, we get: 
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 If we integrate from the fission energy E  to an arbitrary energy E, we get: 0
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From Eqn. 2, and noting that q(E )=q 0 , thus: 0
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At thermal energy: 
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THE RESONANCE INTEGRAL FOR HOMOGENEOUS REACTORS 
 

To estimate p from Eqn. 6, one needs to know the energy dependence of the cross 

sections and integrate over the whole energy range.  For homogeneous reactors with 

weak fast absorptions we can approximate the integral in Eq. 6.  Since ∑ s  is fairly 

constant we can write it as: 
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If we have a very predominant absorber (e.g  U ), we can substitute N  for ∑  and 

rewrite the integral as: 
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In case of “infinite dilution” of the absorbing material: 

 

s a∑ >> ∑ , 

 

and we can write: 
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wher:e 
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If s∑  is comparable to , we have the effective resonance integral: a∑
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If we remove the (1 )a a

s

N σ
+

∑
 term from the denominator: 
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where: aσ  and s∑  are average values over the energy range. 

 In this case: 
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If φ(E) = φ /E, we get: 0
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Thus we can write for the effective resonance integral: 
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and the resonance escape probability is now written as: 
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This equation is valid for homogeneous reactors.  Some values of 0I  are in Table 1. 

 

Table 1: Values for infinitely dilute resonance integrals. 

 

Nuclide Process I0 

(0.5-1.0 MeV)

I’0 
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90Th232 capture 85 - 14.5 

90Th233 capture 400 - 14.5 

91Pa233 capture 1200 - 14.5 

92U233 capture 300 - 14.5 

 absorption 1200 - 14.5 

 fission 900 - 14.5 

92U234 capture 700 - 14.5 

92U235 capture 150 - 14.5 

 absorption 450 - 14.5 

 fission 300 - 14.5 

92U236 capture 400 - 14.5 

92U239 capture 280 - 14.5 

94Pu239 capture - 1500 15.7 

 absorption - 3500 15.7 

 fission - 2000 15.7 

94Pu240 capture 9000 - 14.5 

94Pu241 capture - 1000 15.7 

 absorption - 2800 15.7 

 fission - 1800 15.7 

94Pu242 capture 1300 - 14.5 

 



  absorption = fission + capture 
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