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INTRODUCTION 
 
 In the two group theory treatment we consider a thermal energy group, and combine all 
neutrons of higher energy into a fast energy group. 
 
TWO GROUP CORE DIFFUSION EQUATIONS 
 
 If we consider the fast and thermal energy fluxes, we get as balance equations for the fast 
and thermal groups: 
 
Fast Group: 
 

2
1 1 1s 1 1a 1 1f 1 2f 2

-[Leakage]-[Removal by scattering]-[Absorptions]+[Fast fissions]+[Thermal fissions]=0
D - - 0φ φ φ ν φ ν φ∇ ∑ ∑ + ∑ + ∑ =

 (1) 

 
Thermal Group: 
 

2
2 2 2a 2 1s 1

-[Leakage]-[Absorptions]+[Downscattering neutrons from fast group]=0
                  D - 0φ φ φ∇ ∑ + ∑ =

   (2) 

 
 The equations are coupled through the thermal fission term: 
 
   2f 2φ∑ , 
 
and the fast removal term: 
 
   1s 1φ∑ . 
 
CRITICALITY EQUATION FOR TWO GROUP THEORY AND BARE 
REACTORS 
 
 We assume that the fluxes in the core have a geometrical buckling B2 satisfying: 
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 Since B2 is the same for both the thermal and fast fluxes, they are then proportional 
everywhere for the bare reactor.  Equations 1 and 2 can be rewritten as: 
 
      (1)’ 2

1 1 1s 1 1a 1 1f 1 2f 2-D - - 0B φ φ φ ν φ ν φ∑ ∑ + ∑ + ∑ =
 
        (2)’ 2

2 2 2a 2 1s 1-D - 0B φ φ φ∑ + ∑ =
 
 From Eqn. 2’ the ratio of thermal to fast flux is: 
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 Considering the two source terms in Eqn. 1: 
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1f 1 2f 2 2f 2 2f 2
2f 2

where    is the fast fission factor,

ν φ ν φν φ ν φ ν φ εν φ
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2f 2

=1+ φε
φ

∑
∑

       (5) 

 
In a bare unreflected reactor core, the ration of thermal to fast flux ratio is a constant given by 
Eqn. 3, thus: 
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  (6) 

 
 This is not the case in a reflected reactor core since the thermal flux to fast flux ration is 
not a constant. 
 Substituting from Eqn. 4 into Eqn. 1’ we get 
 
   2

1 1 1s 1 1a 1 2f+D +( )B 2φ φ φ εν∑ + ∑ = ∑ φ  
 
 Defining the fast diffusion area: 
 

   2 1
1

1 1s a

DL =
∑ +∑

       (7) 

 
we can write: 
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   (8) 

 
 Since the ratio: 
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is the fraction of fast neutrons removed by fast absorptions, we can express the resonance escape 
probability as: 
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Since: 
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we can rewrite Eqn. 8 as: 
 

   2 2 2 2
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1 1 1.
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L B L B∞=
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=     (9) 

 
 For agreement with Fermi Theory, it would be necessary that: 
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which can be true only in weakly absorbing media. 
 
CRITICALITY EQUATIONS FOR THE CORE OF A REFLECTED 
REACTOR 
 
 In a reflected system the fast flux to thermal flux ratio is not a constant and the method 
adopted for a bare unreflected reactor needs to be modified.  Equation 1’ can be rewritten in the 
form: 
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where: 
 
   1n 1s 1a 1f( )ν∑ = ∑ +∑ − ∑  
 
is a fast net removal cross section from the fast group to the thermal group. 
 Equation 10 can be rewritten as: 
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      (11) 

 
Similarly, Eqn. 3 can be written as: 
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Multiplying the sides of Eqns. 11 and 12 we get: 
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where kn is a modified multiplication factor.  It will be equal to the infinite medium 
multiplication factor only when there are no fast fissions with: 
 
   1 0, and 1f nk kε ∞∑ = = ⇒ =  
 
 Equation 13 is a quadratic equation in B2: 
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If we denote: 
 

   2 2 2 2
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1 1 ( 1)1, ( ), 0n

n n
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−
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then the roots of Eqn. 14 are: 
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2 4
2

b b cµ − + +
+ =       (15) 
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2 4
2

b b cν − − +
− =       (16) 

 
By adding Eqns 15 and 16: 
 
          (17) 2 2 bν µ= +
 
The root 2µ  is called the principal buckling, and the root 2ν  is called the alternate buckling.  
Both roots are positive quantities.  For a bare reactor only 2µ  is used.  If 4c is small compared 
with b2, 2µ  will be the difference between two nearly equal quantities, and will not be 
numerically accurate.  In this case one can instead use the binomial expansion: 
 

   2 3( 1) ( 1)( 3)(1 ) 1 ...
2! 3!

n n n n n nx nx x x− − −
+ ≈ + + + +  

 
Hence: 
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THE CORE FLUX DISTRIBUTIONS 
 
 Having determined that the buckling B2 has two values 2µ  and 2ν  as given by 
Eqns. 15 and 16, we now have two solutions for the flux distributions.  For the principal 
buckling: 
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Considering spherical geometry, the solutions to these two equations are: 



 

   1
sin,c

rAX X
r
µφ = =       (18) 

 
   2 'c A Xφ =        (19) 
 
 The relationship between A and A’ is found by substituting Eqns. 18 and 19 in 
Eqn. 2’, yielding: 
 
   2

2 2a 1s-D ' - ' 0A X A X AXµ ∑ + ∑ =  
 
Thus we can write for the principal coupling coefficient: 
 

   1
1 2

2 2

' s

a
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A Dµ

∑
= =

+ ∑
     (20) 

 
Thus Eqns 18 and 19 can be written: 
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2 1

c

c

AX
AS X

φ
φ

=
=

       (21) 

 
 For the solution corresponding to the alternate buckling, similarly: 
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   1
sinh,c

rCY Y
r
νφ = =       (22) 

 
   2 'c C Yφ =        (23) 
 
 The alternate coupling coefficient can be obtained by substitution into Eqn. 2’ as; 
 
   2

2 2a 1s+D ' - ' 0C Y C Y CYν ∑ + ∑ =  
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2 2

2 2

' s

a
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C Dν

∑
= =

∑ −
      (23) 

 
If there is a small difference between the terms in the denominator, then we let: 
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and use: 
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The alternate solutions then become: 
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2 2

c
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CS Y

φ
φ

=
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 From Eqns. 21 and 22 the total solution becomes: 
 
   1c AX CYφ = +       (27) 
 
   2 1c AS X CS Y2φ = +       (28) 
 
For the two group fluxes in the core a spherical reactor: 
 

   1
sin sinh

c
rA C

r r
rµ νφ = +      (29) 

 

   2 1 2
sin sinh

c
rAS CS

r r
rµ νφ = +     (30) 

 
Since the flux vanishes at the extrapolated boundary, C=0 for a bare reactor.  For a 
reflected reactor, the flux does not vanish at the extrapolated boundary and C does not 
equal 0. 
 The critical size of a bare reactor can be found by using the relationship: 
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but for the reflected reactor, the situation is different. 
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Fig. 1: Flux distributions in the core and reflector of a two region reactor using the 
one group and the ntwo group models.  Rout=R+T+d. 

 
SOLUTION IN THE REFLECTOR IN TWO GROUP THEORY 
 



 In the reflectror, there is no neutron source and the equations for the fast and 
thermal groups are: 
 

    
2

1r 1r 1sr 1r 1ar 1r
2

2r 2r 2ar 2r 1sr 1r

D 0

D 0

φ φ φ

φ φ φ

∇ − ∑ − ∑ =

∇ − ∑ + ∑ =
 
The source term in the thermal group is here the removal term from the fast group.  
Dividing by the diffusion coefficients and defining the diffusion areas: 
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      (32) 

 
the equations can be written: 
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1r 1r2

1

1 0
rL

φ φ∇ − =       (33) 

 

   2 1sr
2r 2r 1r2

2 2

1 0
r rL D

φ φ φ∑
∇ − + =      (34) 

 
Equation 33 has a solution in spherical geometry: 
 

   
1

1 1 1,
r

r
L

r
eFZ Z

r
φ

−

= =       (35) 

 
for an infinite reflector, but for a finite reflector of thickness T and an extrapolation 
distance d, it is preferable to use the solution: 
 

   1
sinh( )R T d rZ

r
+ + −

=      (36) 

 
 For the thermal flux solution in the reflector, we write: 
 
   2 2 3 1 2 3r rGZ S GZ S FZ1φ φ= + = +     (37) 
 
where: 
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Here, S3 is a coupling coefficient to be determined.  It can be noticed that in any 
geometry: 
 

   2 2
1 1 22 2
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1 1, .
r r

2Z Z Z Z
L L

∇ = ∇ =  

 
 Substituting in Eqn. 34, we get: 
 

   2 1 2 1 1sr
3 32 2 2 2

2 1 2 1 2

0
r r r r r

Z FZ Z FZG S G S FZ
L L L L D 1

∑
+ − − + =  

 
From which: 
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      (38) 

 
CRITICALITY CONDITION 
 
 The continuity of the fluxes and the currents at the interface between the reactor 
core and reflector can be written as: 
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c c r r
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D D
D D r
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− ∇ = − ∇

      (39) 

 
Substituting in Eqns 39 from Eqns. 27,28, 35 and 37, we get: 
 

      (40) 
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c c r
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AX CY FZ
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+ =

+ = +
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'
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where the primes denote a gradient operation, and the functions are evaluated at r=R.   
 In matrix notation, these equations can be expressed as:’ 
 

   

1

1 2 3 1 2
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1 1 1 1
' ' ' '

2 1 2 2 2 3 1 2 2

0

0
0c c r

c c r r

X Y Z A
S X S Y S Z Z C

D X D Y D Z F
D S X D S Y D S Z D Z G

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟ =
⎜ ⎟⎜ ⎟−
⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠

  (41) 

 
 These are four simultaneous linear algebraic equations in the four unknowns A, C, 
F and G.  These equations are of the homogeneous type being equal to zero on the right 
hand side, and it is not possible to obtain explicit expressions for all four constants.  As in 
all sterady state reactor problems, there will remain one undetermined constant 
corresponding to the flux or the power level in the reactor.  Thus three of these unknowns 
can be determined in terms of the fourth. 
 The only non trivial solution of this linear system of equations requires that the 
determinant of the coefficients vanishes: 
 

   

1

1 2 3 1 2
' ' '

1 1 1 1
' ' ' '

2 1 2 2 2 3 1 2 2

0

0
0c c r

c c r r

X Y Z
S X S Y S Z Z

D X D Y D Z
D S X D S Y D S Z D Z

−
− −

∆ ≡ =
−
− −

  (42) 

 
 This expression may be regarded as the criticality condition for the reflected 
reactor in the two group formulation, since it involves both the group constants and the 
dimensions of the reactor.  The specifications of the fuel concentration or of the core size 
allows the determination of the other through the use of the above relation. 
 
EVALUATION OF CRITICALITY DETERMINANT 
 
 The evaluation of the criticality relation is laborious, although straightforward.  
Some simplification in the calculation can be achieved if one takes advan tage of the fact 
that many terms in the determinant are insensitive to variations in the fuel concentration 
or the size of the core. 
 Dividing the first column by X, the second by Y, the third by Z1, and the fourth by 
Z2, then the third row by D1c and the fourth row by D2c, does not change the value of the 
determinant and we get: 
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α β ρ γ
α β ρ γ ρ δ
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ρ ρ

−
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−
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Proceeding to solve in terms of the minors of the fourth column: 
 

   1 2 1 1 3

1 2 2 3 1

1 1 1 1 1 1
1 0S S S

S S S
α β ρ γ ρ δ
α β ρ γ α β ρ γ

− −
∆ = − − − − =

− −
 

 
Using the scissors rule for expanding the determinants we get: 
 

   

2 1 1 2 3

1 2 3

1 1 1

2 2 2

3 3 2

: (
(

( )

C C
C C C

where C S
C S
C S

)
)

Cρ δ ρ γ βα

ρ γ β
β ρ δ
ρ δ γ

+ +
=

+ +
= −
= −
= −

     (43) 

 
 This is the two group critical equation and is satisfied by only the critical 
dimension.  The computational procedure to be followed for a given reactor size in using 
Eqn. 43 consists in using various values of the fuel concentration, and evaluating each 
side of Eqn. 3.  The RHS and the LHS can then be plotted as a function of the fuel 
concentration, and the intersection of the two curves yields the critical concentration. 
 Another type of calculation would be to determine the critical reactor size for a 
given reactor composition.  The functions X, Y, Z1 and Z2 and their gradients in spherical 
geometry are listed in Table 1. 
 

Table 1: Solution functions for reflected cores in spherical geometry.  R is core 
radius, T is reflector thickness and d is extrapolation length. 

 
X(r) sin r

r
µ  

X’(r) 
2

cos sinr r
r r

µ µ µ
−  



Y(r) sinh r
r
ν  

Y’(r) 
2

cosh sinhr r
r r

ν ν ν
−  

Z1(r) 
1

sinh
r

R T d r
L

r

+ + −

 

Z1’(r) 
1 1 1

2

1 cosh sinh
r r r

R T d r R T d r
L L L

r r

+ + − + + −
−

−

Z2(r) 
2

sinh
r

R T d r
L
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+ + −

 

Z1’(r) 
2 2 2

2

1 cosh sinh
r r r

R T d r R T d r
L L L

r r

+ + − + + −
−

−

 
DETERMINATION OF THE FLUX DISTRIBUTIONS 
 
 If the reactor critical composition or size are determined, the constants C, F, and g 
can now be evaluated in terms of A.  We first rewrite Eqn. 40 in the form: 
 
   1 0AX CY FZ+ − =

2

  (44) 
 
   1 2 3 1 0S AX S CY S FZ GZ+ − − =   (45) 
 
   ' ' '

1 1 0AX CY FZρ+ − =   (46) 
 
   ' ' ' '

1 2 2 3 1 2 2 0S AX S CY S FZ GZρ ρ+ − − =   (47) 
 
Dividing Eqn. 46 by Eqn. 44: 
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From which we can estimate C: 
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Aρ γ α
β ρ γ

−
=

−
      (48) 

 
Substituting from Eqns. 44 and 45 into Eqn. 45 gives: 
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XF A
Z

β α
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−
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Substituting from Eqns. 44 and 45 into Eqn. 45 gives: 
 

   1 1 2 1 3
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Equation 47 yields no new information, and we now have C, F and G in terms of A.  The 
constant A can be determined as a function of the reactor power level in the fo;;owing 
manner.  The reactor power can be written as: 
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1 1 2 2

11
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where: 
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 In spherical geometry the element of volume dV is: 
 
    24dV r drπ=
 
from which: 
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This can be rewritten as: 
 

   1 2 2
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thus, using the expression 48 for C, we get: 
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 The average value of the thermal flux in the core is found similarly to be: 
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 From Eqn. 51, we now get: 
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From which: 
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 Knowing A in terms of the reactor power, and the constants C, F, anf G in terms 
of A, one can n ow plot the flux distributions in the core and the reflector.  These would 
be needed for the heat transfer calculations since the neutron flux distribution determines 
the heat generation distribution.  They would also be needed for the fuel burnup and 
management as well as the radiation damage and materials considerations. 
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