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1. INTRODUCTION 
 
 The use and generation of random numbers uniformly distributed over the unit 
interval: [0,1] is a unique feature of the Monte Carlo method.  These are used as building 
blocks for constructing and sampling probability density functions that represent any of 
the processes or phenomena that are under investigation.  Meaningful sequences of 
random numbers must be generated for valid results to be generated.  Otherwise the 
infamous gigo (garbage in, garbage out) adage of numerical computations would apply.  
A user of Monte Carlo is well advised to the check the validity, including length and 
period and randomness of his sequence of random numbers before embarking on a major 
simulation. 
 Random numbers can be obtained or generated in many different ways.  The last 
digits in phone numbers, not the first numbers, in a phone directory can be used as 
random numbers.  Tables of random numbers that were statistically tested for 
randomness have been published, just like trigonometric functions tables.  The white 
noise from electronic equipment and the decay of radioactive isotopes, being random 
phenomena have been used to generate random numbers.  Spinning a roulette wheel with 
its perimeter divided into ten sections can generate a random sequence of digits from 0 to 
9.  This particular way of generating random digits sequences suggested the name of 
Monte Carlo, alluding to the famous gambling casino at Monte Carlo in the municipality 
of Monaco, by Nice in Southern France. 
 
2. THE MID-SQUARE METHOD 
 
 Computer usage depends on the mathematical generation of sequences of random 
numbers that are long enough, or having a long period, so that they do not repeat 
themselves in a given simulation.  If the sequence starts repeating itself, the sampled 
points would be repetitions of previous points.  The repeated samples are useless and 
would not yield any new information. 
 In the mid-square method, due to John von Neumann, an initial number n0 is 
raised to its second power.  Let us consider a number of four significant digits.  Then the 
four middle digits of the ensuing number are kept to constitute the next number in the 
sequence, the two digits to the left and the two digits to the right are discarded, and the 
process repeated.  
 We show an example of such a generated sequence as follows: 
 
     n0 = 0.9876 
 
     n0

2 =0.97535376 
 



     n1 =0.5353 
 
     n1

2 = 0.28654609 
 
     n2 = 0.6546 
 
     n2

2 = 0.42850116 
 
     n3 = 0.8501 
 
     n3

2 = 0.72267001 
 
     n4 = 0.2670 
 
     …………...……. 
 
 This method is marginally satisfactory, and the multiplicative congruential 
method has universally replaced it. 
 
3. THE MULTIPLICATIVE CONGRUENTIAL METHOD 
 
 This method is the best studied and most widely used method for random 
sequences generation.  It generates pseudo-random sequences of random numbers 
uniformly distributed over the unit interval. It depends on the use of the recursive 
relation: 
 
     )(mod}{ 1 mulocaxx ii +≡ −    (1) 
 

The notation “modulo” or sometimes “mod” signifies that xi is the remainder 
when {axi-1 + c} is divided into m.  Here m is a large integer determined by the design of 
the computer, usually a large power of 2 or 10, and a, c, and xi are integers between 0 and 
(m-1). 
 In many applications of the method the constant c is taken as zero, yielding a 
simpler form of Eqn. 1: 
 
     )(mod}{ 1 muloaxx ii −≡    (2) 
 
 The value of m is normally taken as the largest number that can be generated on a 
computer, which depends on the number of bits used in its processor and its data busses. 
In this case for a design of n bits: 
 
     m = 2n – 1     (3) 
 

For instance, for a hypothetical n = 4 bits machine, the largest number that can be 
generated would be according to Eqn. 3: 
 



     m = 24 –1 = 16 –1 =15. 
 
This number expressed in the binary notation is: 
 
     m = 1111 
 

= 1x20 + 1x21 + 1x22 +1x23 

 
= 1x1 + 1x2 + 1x4 + 1x8 
 
= 1 + 2 + 4 + 8 
 
= 15 

 
 The numbers: 
 

     )1,...(3,2,1, −== mi
m
xi

iξ ,   (4) 

 
and not just xi, are taken as the pseudorandom sequence over the unit interval. 
 The advantages of using pseudorandom sequences are that a calculation can 
always be repeated, starting from the same seed number, for comparison and testing 
purposes of programs, a few simple operations are needed, and the program uses a few 
memory positions. 
 The only disadvantage is that the sequence must satisfy certain conditions for not 
repeating itself after a long length or period. 
 As an example of a random sequence using Eqn. 3: 
 
 Let: Seed  x0 = 2 
 
   m = 24 =16 
 
   c = 1 
 
   a = 3 
 

 Then:  x0 = 2           1250.0
16
2

0 ==⇒ ξ  

 

   x1 = {3x 2 +1} mod 16 =  7 mod 16 =  7 4375.0
16
7

1 ==⇒ ξ  

 

   x2 = {3x 7 +1} mod 16 = 22 mod 16 =  6 3750.0
16
6

2 ==⇒ ξ  

 



   x3 = {3x 6 +1} mod 16 = 19 mod 16 =  3 1875.0
16
3

3 ==⇒ ξ  

 

   x4 = {3x 3+1} mod 16 = 10 mod 16 = 10 6250.0
16
10

4 ==⇒ ξ  

 

   x5 = {3x10+1} mod 16 = 31 mod 16 = 15 9375.0
16
15

5 ==⇒ ξ  

 

   x6 = {3x15+1} mod 16 = 46 mod 16 = 14 8750.0
16
14

6 ==⇒ ξ  

 

   x7 = {3x14+1} mod 16 = 43 mod 16 = 11 6875.0
16
11

7 ==⇒ ξ  

 

   x8 = {3x11+1} mod 16 = 34 mod 16 =  2 1250.0
16
2

8 ==⇒ ξ  

 

   x9 = {3x 2 +1} mod 16 =  7 mod 16 =  7 4375.0
16
7

9 ==⇒ ξ  

 
   ………………………………………………………………… 
 
 We notice that the sequence obtained for the xi’s is: 
 
   2, 7, 6, 3, 10, 15, 14, 11, 2, 7, ….. 
 
so that the sequence started repeating itself with a period of 8. 
 
 If we would have chosen: 
 

 m = 24 – 1 = 15, 
 
the generated sequence would become: 
 

   x1 = {3x2 +1} mod 15 =  7 mod 15 = 7 466666.0
15
7

1 ==⇒ ξ  

 

   x2 = {3x7 +1} mod 15 = 22 mod 15 = 7 466666.0
15
7

2 ==⇒ ξ  

 
   ………………………………………………………………….. 
 



In this case, the generated sequence is a single number that would repeat itself 
indefinitely, the period of the sequence is 1, and the sequence is useless for any 
meaningful calculations. 
 
4. COMPUTER IMPLEMENTATION AND TESTING 
 
 Usually the sequence repeats itself after at most m steps. It must be ensured for a 
given simulation that the period is longer than the needed number of random numbers. 
The value of m is usually chosen large enough to permit this. 
 If a compiler does not provide a satisfactory random number generator, writing 
one’s own generator is advisable. Figure 1 shows a random number generator subroutine, 
rand, which can be embedded and called from any other application. It could be 
reprogrammed as a function instead of a subroutine. 
 
! pseudo_random f90 
! Visualizing the randomness of our own pseudo random 
! number generator by generating uniformly distributed 
! points on the unit square, for plotting with a plotting 
! routine, e.g. Excel. 
! The multiplicative congruential method:  
! x(i)={a*x(i-1)+c}(modulo m) 
! is used where: 
! The (modulo m) notation signifies that x(i) is the remainder  
! when {a*x(i-1)} is divided by m. 
! m is a large integer determined by the design of the computer,  
! usually a large power of 2. 
! a, c, and x(i) are integers between 0 and m-1 
! The numbers x(i)/m are used as the pseudo-random sequence. 
! M. Ragheb, Univ. of Illinois. 
! 
 program pseudo_random 
 real x, y, rr 
 integer :: trials = 1000 
! Initialize output file of uniformly distributed random 
! numbers on the unit square 
 open(44, file = 'random_out1') 
 do i= 1, trials 
  call rand(rr) 
  x=rr 
  call rand(rr) 
  y=rr 
  write (44,100) x, y 
 end do 
100 format (2f10.3) 
 end  
 
 subroutine rand(rr) 
 real rr, xx1, xm 
 integer x1 
 integer :: x0 = 2 
 integer :: c  = 1 
! integer :: a  = 3 
 integer :: a  = 3*17 







 do i= 1, trials 
  call random(rr) 
  x=rr 
  call random(rr) 
  y=rr 
 write (44,100) x, y 
 end do 
   
100 format (2f10.3) 
 end 
 

Fig. 4: Procedure to visualize a compiler’s random number generator. 
 
6. QUASIRANDOM SEQUENCES 
 
 Rather than using a pseudorandom sequence, a good sampling of the unit interval 
may be possible by using quasirandom sequences as suggested by Zaremba and Halton.  
In this case an example of a sequence of the unit interval being halved, and then each 
subdivision is halved again can generate the following quasirandom sequence: 
 
    0.5 0.25 0.125 ….. 
     0.75 0.325 ….. 
      0.625 ….. 
      0.825 ….. 
 
 Sampling the unit interval uniformly is not a goal by itself.  Beyond allowing us 
to uniformly sample the unit interval, pseudorandom or quasirandom sequences allow us 
to go the extra step of sampling any discrete or continuous probability density function 
and thus allow us to simulate any needed effect or process that can be represented by a 
probability density function. 
 
7. DISCUSSION 
 
 The incentive to design and build computer platform with a larger number of bits 
in its word length is not mandated just by the need to obtain higher accuracies by 
retaining a large number of significant digits, the need to generate long encryption cipher 
keys, or by the need to generate large magnitudes in the address registers so as to 
manipulate long vectors and large matrices.  It is also mandated by the need to generate 
unrepeated long sequences of random numbers in Monte Carlo simulations.  This affects 
the costs of the computing machinery.  A 32 bits or 64 bits desktop computer or 
workstation costs in the range of the thousands of dollars, whereas a supercomputer costs 
in the range of the million of dollars.  Desktops and workstations are satisfactory for most 
practical simulations.  If more ambitious computations are contemplated with a need of a 
large number of simulations, one should consider the migration of the work from a 
desktop machine or a workstation to a computing platform with a larger word length.  A 
word of caution must be stated here about processors that could process data with a 
reported word length of say 64 bits, but then send the data on 32 bits data buses. In this 
case half the bits are lost, and the computer becomes effectively a 32 bits machine.  The 



need to check the capabilities of the computing platform used, the adequacy of the 
random number generator used and the randomness and periods of the generated random 
sequences in a given computation cannot be overemphasized. 
 
PROBLEMS 
 

1. Instead of visualizing the pseudorandom sequence on the unit square, modify the 
procedure given above and use each three consecutive numbers in the sequence to 
generate a point (xi, xi+1, xi+2) in the unit cube. Display both a good and a bad 
sequence of pseudorandom numbers. 

2. Use the simpler form of the congruential multiplicative method where c = 0, and 
investigate the conditions under which good and bad random sequences are 
generated. 


