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INTRODUCTION  
 

We consider the solution of the fundamental equations of continuum mechanics, 

particularly where a pressure wave propagates in a medium.  The fundamental equations 

describe the conservation of mass, the conservation of linear momentum, the 

conservation of energy and are associated with an equation of state.  The equations form 

a set of coupled first order nonlinear partial differential time dependent equations.  

We consider a pressure wave propagating in the medium.  A wave is a time 

dependent process that transfers energy from one point to another in a medium.  The 

wave propagates through the medium because of a feedback loop that exists between the 

various physical properties of the medium that are changed by the energy deposition in 

the medium.  

 

EQUATIONS OF CONTINUUM MECHANICS  
 

Four basic relations define continuum mechanics.  For an arbitrary control volume 

V, a continuity conservation, momentum conservation, energy conservation energy 

equations and an equation of state define the problem.  These are first order partial 

nonlinear coupled equations which are usually solved using analytical methods only in 

idealized situation.  Numerical finite difference methods are used to solve them for more 

realistic situations.  

The continuity equation or mass conservation equation over a control volume V 

can be expressed as:  
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The conservation of momentum equation or equation of motion is:  
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The first law of thermodynamics suggests that energy can neither be created nor 



 

 

destroyed, leading to the energy conservation equation:  

 

 

Rate Energy Energy Energy
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To complete the formulation, an equation of state is needed.  

 

DISCRETIZATION OF THE CONTINUUM MECHANICS 

EQUATIONS  
 

We consider a basic model of a one dimensional Lagrangian structure of a 

medium which could be gaseous fluid or solid.  In this case the finite mesh is embedded 

in the material and moves with it.  The medium is divided into slabs in the x coordinate.  

The pressure that is a function of x only moves with the slabs.  

The conservation of mass or continuity equation is satisfied by defining a mass 

per unit area for each slab as a constant at all times since mass is conserved requiring no 

time superscript as:  
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Each slab is divided in half, and each neighboring halves are combined into slabs 

with mass: 
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The half integer subscripted variables are more naturally defined at the interfaces 

of secondary slabs which are positioned around the centers of the original slabs.  

In the same way, the velocities are better defined at times t
n+1/2

 half way between 

the primary times t
n

 and t
n+1

.  

The computational cycle requires the computation the following discrete variables 

for all values of j:  
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The computational cycle uses the beginning of time cycle values and integrates 

them to deduce the end of time cycle values:  
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Let us define the computational time step:  
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To advance the interface position we use the difference approximation for the 

velocities:  
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By integration, the new interface positions become:  
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New values for the specific volumes can be computed from the approximation:  
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The specific internal energy can be calculated based on the work done on the slab 

assuring conservation of energy through the thermodynamic relation:  
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The pressure term p in Eqn. 11 can be calculated at an intermediate time 
1

2
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t
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provided we knew its value:
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.  However, at this stage we only know the previous 

time step value of the pressure: 1
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, so we extrapolate and use:  
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With the new updated values of 
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As an example of an equation of state we can consider the gamma law gas:  
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In general, the equation of state is defined in a table stored in the computer 

memory, and interpolation is used to pick the values of interest.  

An updated velocity can now be calculated using the acceleration equation or the 

equation of motion:  
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The derived difference equations are used for one computational cycle to update 

all the variables one time step.  An artificial viscosity term is added to account for shock 

presence.  

 

NUMERICAL MODEL  
 

The cycle involved in pressure wave propagation is shown in Fig. 1.  Starting at 

the top of the loop with the applied pressure field, the equation of motion describing the 

conservation of momentum provides a functional relationship between the pressure field 

and the resulting acceleration of each point of the medium.    

Accelerations when allowed to act over a small time increment dt produce new 

velocities.  Velocities produce displacements, and displacements produce strains.  Strains 

produce a new pressure field, and the cycle is repeated.  The loop is the basis of 

numerical processes solving the equations of continuum mechanics for different 

geometries using the finite differences methods.  

 



 

 

 
 

Figure 1. Pressure wave propagation in a medium.  

 

APPENDIX  
 

Computational Procedure  

 
program computational_fluid_dynamics  

!  

! Simulating computational fluid dynamics in one dimension   

! Lagrangian coordinates and a gas equation of state are used  

! M. Ragheb, Univ. of Illinois at Urbana-Champaign   

! Version 3.0  

! Language: ANSI Fortran 94  

!  

 implicit none  

!**********************************************************************  

! Hydrodynamic variables  

! p(j,n)=pressure of j-1/2 th mass at at time update cycle n  

! x(j,n)=position of j th mass at time update cycle n  



 

 

! v(j,n)=specific volume =1/density of j-1/2 th mass at time update cycle n  

! e(j,n)=specific internal energy of j-1/2 th mass at time update cycle n  

! u(j,n)=velocity of j-th mass at at time update cycle n  

! n=1 is initial time cycle  

! n=2 is new time cycle  

!**********************************************************************  

! Arrays specification  

! dimension(space,time)  

 real p(100,2), x(100,2), v(100,2), e(100,2), u(100,2)  

 real deltam,deltat,gamma  

 integer max,j,n,timesteps  

    

! constants initialization  

! number of time steps in numerical simulation  

 timesteps=100  

! max=maximum number of spatial meshes of material  

 max=10  

! deltam=Lagrangian coordinates masses  

 deltam=1.0  

! deltat=time step  

 deltat=0.01  

! Equation of state's gas constant, p=(gamma-1)*(e/v)  

 gamma=1.4  

  

! Initial conditions of material  

  

 do 11 j=1,max  

  x(j,1)=j  

! v=(dx.dA)/dm=dV/dm , dA=1=unit area  

  v(j,1)=1.  

  e(j,1)=2.0  

  p(j,1)=(gamma-1.0)*(e(j,1)/v(j,1))  

! du/dt = -v dp/dx = -(dx.dA/dm) dp/dx= -dp/dm , dA=unit area  

  u(j,1)=0.  

11 continue  

  

! Boundary conditions  

! initial  speed pulse imparted to mass #5  

 u(5,1)=10.  

  

! Open output file  

 open(9,file='cfd.out')  

  

! loop over time steps  

 do 99 n=1,timesteps  

  

! integrating new time cycle variables  

 write(*,*) 'Time step =', n  

 write(*,*) 'x(j,1),x(j,2),v(j,1),v(j,2),e(j,1),e(j,2),p(j,1),p(j,2),u(j,1),u(j,2)'  

  

! Updating positions  

 do 77 j=1,max  

  x(j,2)=x(j,1)+(u(j,1) * deltat)  

  

 ! Updating specific volumes from conservation of energy equation   

  if (j.eq.1)  then    



 

 

   v(j,2)=  v(j,1)  

  else   

   v(j,2) = (x(j,2) - x(j-1,2))/deltam  

  end if  

  

! Updating specific internal energy (no pressure extrapolation)   

  if(j.eq.1) then  

   e(j,2)= e(j,1)  

  else  

   e(j,2)= e(j,1) -(p(j,1) * (v(j,2)-v(j-1,1)))  

  end if  

  

! Updating specific internal energy with pressure extrapolation  

  

!  if(j.le.2) then  

!   e(j,2)= e(j,1)  

!  else  

  

!  Extrapolated pressure  

!   p(j,1)=p(j-1,1)+(p(j-1,1)-p(j-2,1))/2.0  

     

!   e(j,2)= e(j,1) -(p(j,1) * (v(j,2)-v(j-1,1)))  

!  end if  

  

! Updating pressure from equation of state  

  p(j,2) = (gamma-1.0) * (e(j,2)/v(j,2))  

  

! Updating velocities from conservation of momentum equation  

  if (j.eq.1) then  

   u(j,2) = u(j,1)  

  else  

   u(j,2) = u(j,1) - ((p(j,2)-p(j-1,2))*(deltat/deltam))  

  end if  

  

  

10 format(10(f6.1,1x))  

20 format(10(e14.8,1x))  

  

77 continue  

  

! pause  

  

! Moving updated values vector to initial values vector  

 do 88 j=1,max  

  x(j,1)=x(j,2)  

  v(j,1)=v(j,2)  

  e(j,1)=e(j,2)  

  p(j,1)=p(j,2)  

  u(j,1)=u(j,2)  

  

! Write time step results on screen  

  write(*,10) x(j,1),x(j,2),v(j,1),v(j,2),e(j,1),e(j,2), &  

  &           p(j,1),p(j,2),u(j,1),u(j,2)  

! Write time step results on output file:'cfd.out'  

  write(9,20) x(j,1),x(j,2),v(j,1),v(j,2),e(j,1),e(j,2), &  

  &           p(j,1),p(j,2),u(j,1),u(j,2)  



 

 

  

88 continue  

  

 pause   

  

99 continue  

 close(99)  

 stop  

 end  

   

REFERENCES  
  

1. Joseph B. Keller, “Geometrical Acoustic.  I. The Theory of Weak Shock Waves,” 

Journal of Applied Physics, Vol. 25, No. 8, pp. 938-945, August 1958.  

2. J. T. Cherry and F. L. Peterson, “Numerical Simulation of Stress Wave Propagation 

From Underground Nuclear Explosions,” in “Peaceful Nuclear Explosions, 

Phenomenology and Status Report,” Proceedings of a panel on the Peaceful Uses of 

Nuclear Explosions organized by the International Atomic Energy Agency, Vienna, 2-6 

March, IAEA-PL-388/15, pp.241-325, 1970. 


