UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Grid-Scale Energy Storage

Saurav Mohapatra
smohapa2@illinois.edu
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

NPRE 498: Energy Storage Systems

30 November 2011



ECE ILLlNOlS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ;|I

bout Myself




ECE “_LlNOlS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING j[

About Myself

* Power and Energy Systems Group
— Advisor: Thomas J. Overbye

e Research Area

— Modeling of Equivalent Systems to Preserve Transient Characteristics of
Large-Scale Power Systems

pu—
GCEP

Global Climate & Energy Project
STANFORD UNIVERSITY

@ 1LIPG




ECE "_LlNOlS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING j[

Outline

1. Goals

2. Renewable Energy Sources

3. Effects of Intermittent Renewables and Storage
4. Energy Storage Devices

5. Summary



ECE "_LINOIS DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING j[

Goals

* Survey renewable energy sources, recent progress,
associated problem areas, and grid interfacing

* Understand system level effects of intermittent
renewables and energy storage

— Motivate the necessity of storage in integration of intermittent
renewables with the grid

* Survey grid-scale storage technologies

* Evaluate possible solutions
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Forms of Renewable Energy

e Solar

e Biomass

e Biofuel e Geothermal
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Renewable Portfolio Standard
(RPS)

* A regulation that requires an established level of
production or purchase of energy from renewable
energy sources, such as wind, solar, biomass &
geothermal

Combined Cycle
Nuclear 16%

8%

Combustion Turbine

e Renewables in Western Interconnect
— 17% of generation by 2020

v Cogeneration
Other

17%
Renewables

I <7 % Wind
29%
I : % Geotherma Steam - Coa

I < v sola

I 5 o small Hydro RPS

25%
Conventional Hydro
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Western Interconnection:
Predicted Generation (2010 — 2020)

* Dispatchable generation capacity: small increase

* Renewable generation capacity:
increase of 33,000 MW

— Mainly nondispatchable

— Will require balancing by
conventional sources.

* Grid-scale storage units can 7
essentially be coupled with intermittent j)"\
sources to create hybrid dispatchable
generation 8
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Effect of Intermittent Renewables
on the Western Interconnect

WECC Large
Generation Drop
Simulation Using

PowerWorld version 16
(1/3 real-time
playback)
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Grid Interfacing of Renewables

e Good locations are
distant from existing
transmission networks

— Solar and wind corridors

* Improper placement of
solar/wind farms will
most likely affect stability
of electric grid

— Planning studies are essential
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Benefits of having Storage
Capacity on the Electric Grid

* Mitigate intermittency of renewables

* Possibly eliminate the need
for new transmission and
distribution lines

— Better use of existing branches
during non-peak conditions

load shifting valley filling

_17/\1_

* Provide regulation services

* Quickly deployable, typically in a few quarters

— Fossil plants take years (almost impossible to site in urban areas)

11
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Including Storage while Modeling
Generation Intermittency

e Small-scale model of the
Western Interconnect

* Model loss in generation
at a fictitious wind farm
in the southern part of
the system

* Evaluate effect and
location of storage
placement
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Case 1: No Storage

Frequency (Hz) versus Time (s)
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Case 2: 750MWh Storage — 1 Unit
At One Location

Frequency (Hz) versus Time (s)
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Case 3: 75MWh Storage - 10 Units
Around Middle-Region

Frequency (Hz) versus Time (s)
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Case 4: 75MWh Storage - 10 Units
Around Southern-Regiony,

Frequency (Hz) versus Time (s)
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Energy Storage Devices

Storage Technology Main Advantage Disadvantage Power Energy
(Relative) (Relative) Application Application
High-speed Flywheels | High Power Low Energy Density ®
(FW)
Electrochemical Long Cycle Life Very Low Energy ®
Capacitors (EC) Density
Traditional Lead Acid Low Capital Cost Limited Cycle Life
(TLA) ® O
Advanced LA with Low Capital Cost Low Energy Density
Carbon Enhanced O ®
Electrodes (ALA-CEE)
Sodium Sulfur (Na/S) High Power and Energy | Cost and Needs to Run
Density at High Temperatures @ ®
Lithium-ion (Li-ion) High Power and Energy | Cost and Increased ) ')
Density Control Circuit Needs
Zinc Bromine (Zn/Br) Independent Power and | Medium Energy Density
Energy © @
Vanadium Redox (VRB) [|Independent Power and | Medium Energy Density © ®
Energy
Compressed Air Energy | High Energy, Low Cost | Special Site )
Storage (CAES) Requirements
Pumped Hydro (PH) High Energy, Low Cost | Special Site ®
Requirements

|§| Fully capable and reasonable

Reasonable for this application

O

Feasible but not quite practical or economical

17

NONE| Not feasible or economical

T
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Leading-Edge Technologies

Metal-air batteries

Na/S cells

Li-ion cells

Lead-carbon batteries

Na-ion / Na-halide
batteries

Flow battery
Above-ground CAES
Mini-CAES

Valve regulated lead-acid
batteries with
electromechanical
capacitor

18
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Global Installed Storage Capacity

Installed and Planned Energy Storage Systems

April 2010
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Cost Considerations

Energy Density and Cost vs. Storage Technology
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© Short duration storage, frequent discharge
vr Short duration storage, infrequent discharge
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Mapping Technology to Usage

System Rati
Installed systems as of November 2008
m @
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£
- 1
E
=
& o
E CAES Compressed air
n EDLC  Dbl-layer capacitors
(] FW  Flywheels
0.01 LA Lead-acid
Li-lon  Lithium-ion
Ma-5  Sodium-sulfur
Mi-Cd  Mickel-cadmium
0.001 Ni-MH Nickel-metal hydride
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Storage Location on the Grid

765 kV 345 kV 138 kV 69 kV 410 34 kV 480V 120240V
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Limited Yalue to Grid {ancillary)?
«Limited Value to Customer * ( )

| ue o «Esthetics
+High Security Risk eHigher PCS cost ?

«Technology not quite ready Central Conrol issue ?
«Grid Constraints ) '

+High Discharge Losses (on peak)

Storage Location on Grid

_____ Ancillary Services

Peak Shaving, upgrade deferral, Improved service reliability

22
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More Data on Website
www.electricitystorage.org

* Weight energy density vs. Volume energy density

* Capital cost per unit energy vs. Capital cost per unit
power

* Capital cost per cycle

* Efficiency vs. Lifetime b

Capital Cost par Cycle (s/kWh - output]
& o ] 2

23
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Recap of Technologies

NaS battery EC capacitor

pumped storage

Ni-Cd SMES
advanced lead

acid battery ..@

< Increasing energy o
increasing power P>  Source: Electricity Storage Association
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Summary

* Number of renewables directly connected to electric grid
is on the rise

— Environmental & political reasons

* Is the electric grid ready to handle the large penetration
of intermittent renewables?

— Energy storage and coordinated control are possible solutions

* Hybrid plants — couple generation capacity with storage
— Concentrated solar plants with molten salt energy storage
— Wind farms with compressed air energy storage

* Substation level storage for towns and cities

— Flow batteries 25
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Summary

* Substation level storage for frequency regulation

— Flywheels, superconducting magnetic energy storage

* Community energy storage Units

— Chemical batteries

* Combination of technologies will be used

— Match time scale of intermittency being mitigated
— Match energy storage and power needs

— Charge and discharge capabilities

— Cost considerations

— Volume & weight

— Efficiency

— Lifetime
26
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Thank You for your attention!
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